

Multivariate Analysis of Trace Element Contents in Angelica sinensis and Soil

HANG JIN¹, YUANZHONG WANG¹, ZHENLING ZHAO¹, WEIZE YANG¹, MEIQUAN YANG¹, JI ZHANG¹ and JINYU ZHANG^{1,2,*}

¹Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, 761 Baiyun Road, 650223, Kunming, Yunnan, P.R. China ²Laboratory of Ecological Genetics, College of Life Science, Yunnan University, 2 Cuihu North Road, 650091, Kunming, Yunnan, P.R. China

*Corresponding author: E-mail: jyzhang2008@126.com

(Received: 2 September 2010;

Accepted: 6 June 2011)

AJC-10030

The contents of Hg, Mn, As, Pb, Cu, Mg, Cd, Ni, Fe, Zn and Cr in *Angelica sinensis* (Oliv.) Deils of Yunnan and soil from 14 locations in Yunnan province of China were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed high contents of Zn, Cu, Pb, Fe and Mg in soil and Mg, Fe, Mn, Zn and Cu in *A. sinensis* compared with other trace elements. Among the determined 11 trace elements, *A. sinensis* had relatively strong enrichment to Mn, Cr and Mg. In *A. sinensis*, As-Mg and Ni-Fe were significantly positive correlated; while As-Ni, Cu-Cd, Pb-Fe were significantly negative correlated. Meanwhile, As(plant)-As(soil), Cd(plant)-Hg(soil), Cu(plant)-Mn(soil) and Ni(plant)-Pb(soil) showed strong positive correlation, whereas Mn(plant)-Cu(soil), Pb(plant)-Cd(soil) and Cr(plant)-Pb(soil) showed negative correlation. This paper presented the trace elements properties of *A. sinensis* and expected to be useful for quality evaluation of this medicinal plant.

Key Words: Angelica sinensis, Trace element, Medicinal plant, ICP-AES.

INTRODUCTION

Angelica sinensis (Oliv.) Diels is a perennial herb belonging to the family Apiaceae¹. Its dried root is widely used in Chinese traditional medicine to treat gynecological ailments, fatigue, mild anemia and hypertensive². Its main pharmacological effects include antioxidative and immunomodulatory activities³. In China, *A. sinensis* is grown in the provinces of Gansu, Yunnan, Sichuan, Shaanxi and Hubei. It is considered that the best roots sold in the markets of Southeast Asia, called "Yungui", were from Yunnan⁴. According to the investigation, the cultivation history of *A. sinensis* in Yunnan province has been more than 90 years. Northwest Yunnan is one of the main cultivation areas of *A. sinensis* which has been formed in 1974. After that, the other cultivation area, northeast Yunnan, was also developed. At present, the cultivation area of *A. sinensis* in Yunnan has reached 9 700 hm².

Northwest Yunnan is located in the east Himalaya. It is a hot spot of ethnic diversity. Tibetan, Naxi, Bai, Lisu and other peoples live in this area. Most of local people in the Northwest Yunnan still live in poverty and have a strong dependence on the medicinal plants such as *A. sinensis*⁵. Because people in this area still use traditional medicine as a main treatment for most of the diseases. On the other hand, with the development of social economy, medicinal plants also are seemed as special economic plants to increase family income.

As reported, trace elements played an important role in the reactions which would lead to the formation of these active constituents in medicinal plants⁶. Meanwhile, trace elements involved directly in a variety of physiological activities of organisms⁷⁻¹¹. Plant is an important carrier of transferring trace elements from natural environment to human body¹². Therefore, the research of trace element contents in medicinal plant is very important¹³. It is one of the interesting fields in medicinal plant research¹⁴ and there are many reports in literature on the trace element content in medicinal plant⁶⁻¹⁸. However, little is known about *A. sinensis*.

In this study, we determined the contents of 11 elements in *A. sinensis* and soil from 14 locations in Yunnan Province and analyzed the correlation of trace elements within *A. sinensis* and also between *A. sinensis* and soil.

EXPERIMENTAL

The root of *A. sinensis* and soil were collected from two main *A. sinensis* cultivation areas, northwest and northeast Yunnan, in November, 2009 (Table-1).

Sample preparation: Roots were carefully washed *in situ* and again in the laboratory with deionized water to remove soil and dried at 60 °C until a constant weight was obtained. 1.0 g powdered dry samples were weighed into 100 mL glass beakers. 10 mL HNO₃ and 2 mL H_2O_2 were added to the samples. The mixture was digested on a hot plate at low

TABLE-1								
DETAILS OF SAMPLE LOCATION OF Angelica sinensis								
No.	Location	Longitude	Latitude	Altitude				
	Location	(E)	(N)	(m)				
1	Shemile, Xuanwei	104°12'	26°01'	2010				
2	Jichang, Xuanwei	104°13'	25°55'	2055				
3	Nuge, Zhanyi	104°12'	25°52'	2060				
4	Zhongchahe, Fuyuan	104°09'	25°44'	2025				
5	Huaping, Fuyuan	104°10'	25°44'	1975				
6	Hanjia, Zhanyi	103°40'	25°38'	2010				
7	Xujiaqing, Zhanyi	103°42'	25°38'	1920				
8	Machang Heqing	100°03'	26°28'	3100				
9	Machang, Heqing	100°03'	26°28'	3110				
10	Xiaomachang, Heqing	100°03'	26°30'	3010				
11	Gemerong, Deqin	99°18'	27°48'	2500				
12	Luohuaba, Weixi	99°17'	27°08'	2520				
13	Lameirong, Yulong	99°29'	27°09'	2840				
14	Lameirong, Yulong	99°28'	27°09'	2880				

temperature for 2 h. Then 15 mL deionized water was added. Solutions were precisely transferred to 100 mL volumetric flasks and made to volume with deionized water.

0.5 g powdered dry soil samples were weighed into 100 mL glass beakers. 8 mL HNO₃ and 5 mL HF were added. After the mixture was dry, 2 mL of HClO₄ was added, then 0.5 mol L⁻¹ HCl was added to make to volume until it was dried.

Instrumentation and analytical procedures: ICP-AES: ICPQ-1000 (Shimadzu, Japan); R_f power: 1.2 kW; carrier gas: 1.0 L min⁻¹, auxiliary gas: 1.5 L min⁻¹, coolant gas: 10.5 L min⁻¹; viewing height: 15 mm; measure time: 20 s; grating line: 19201 mm⁻¹ (1:lines).

The detection wavelength, detection limit, recovery and relative standard deviation of the elements are shown in Table-2.

RESULTS AND DISCUSSION

The contents of 11 trace elements in *A. sinensis* and soil are presented in Table-3. The results showed that high content of trace elements in soil as Zn (40 692.08 mg kg⁻¹), Cu (8 449.44 mg kg⁻¹), Pb (7 141.63 mg kg⁻¹), Fe (4 367.50 mg kg⁻¹) and Mg (3 520.83 mg kg⁻¹) and Hg, Mn, As, Cd, Ni and Cr were relatively low. High contents of trace elements in *A. sinensis* as Mg (259.71 mg kg⁻¹), Fe (122.36 mg kg⁻¹), Mn (38.27 mg kg⁻¹), Zn (20.37 mg kg⁻¹) and Cu (12.48 mg kg⁻¹) and Hg, As, Pb, Cd, Ni and Cr contents are relatively low. Mg, Fe, Mn, Zn and Cu are all essential elements to human body¹⁹.

	TABLE-2									
	DETECTION WAVE LENGTH AND LIMITS,									
	RECOVERY AND PRECISION OF THE METHOD									
	Flomont	Detection wave	Detection limits	Recovery	RSD					
Ele	Liement	length (nm)	(µg mL ⁻¹)	(%)	(%)					
	Hg	253.6	0.034	100.1	1.32					
	Mn	279.5	0.070	107.4	0.99					
	As	193.7	0.011	103.3	0.47					
	Pb	283.3	0.046	98.5	1.01					
	Cu	324.8	0.055	99.9	0.99					
	Mg	285.2	0.066	100.3	0.09					
	Cd	228.8	0.071	103.4	0.59					
	Ni	231.6	0.056	98.2	0.95					
	Fe	248.3	0.049	99.9	1.32					
	Zn	213.9	0.084	98.5	0.47					
	Cr	285.5	0.084	98.4	0.49					

Mg is a key element in cell metabolism, involved in a variety of enzyme-catalyzed reaction *in vivo*; iron has an important impact on the transport of oxygen *in vivo*; Mn participates in the formation of hemoglobin and the regulation blood sugar balance; Zn is an integral part of many metal enzymes; Cu plays an important role in the central nerve function^{14,19,20}.

The enrichment coefficients of trace elements in *A*. *sinensis* are displayed in Table-3. Among the enrichment coefficient of the 11 trace elements in *A*. *sinensis*, the order of average was Mn > Cr > Mg > Ni > Fe > Cd > As > Hg > Cu > Zn > Pb. The result improved that *A*. *sinensis* had strong enrichment ability on Mn, Cr and Mg than other trace elements.

The correlation analysis of the trace element in *A. sinensis* is given in Table-4. The result showed that As-Mg, Ni-Fe had significantly positive correlation (p < 0.05), that meant these elements in the *A. sinensis* had a good synergy. Whereas, As-Ni, Cu-Cd had significantly negative correlation (p < 0.01), Pb-Fe were significantly negative correlation (p < 0.05). It indicated that these elements had antagonism.

The correlation analysis of trace elements in *A. sinensis* and soil is demonstrated in Table-5. The results showed that Mn in plant and Cu in soil was negatively correlated (p < 0.05), As in plant and in soil was significant correlated (p < 0.05), Pb in plant and Cd in soil was significantly negatively correlated (p < 0.05), Cu in plant and Mn in soil was significantly correlated (p < 0.05), Cd in plant and Hg in soil was significant negative correlated (p < 0.01), Ni in plant and Pb in soil was significantly correlated (p < 0.05), Cd in plant and Hg in soil was significant negative correlated (p < 0.05), Cr in plant and Pb in soil was significantly correlated (p < 0.05), Cr in plant and Pb in soil was significant negative correlation (p < 0.05).

TABLE-3									
CONTENTS OF TRACE ELEMENTS IN SOIL AND A. sinensis AND THE ENRICHMENT COEFFICIENTS									
Element	Soil (mg kg ⁻¹)	Plant (mg kg ⁻¹)	Enrichment coefficient*						
Hg	7.22 ± 1.99	0.036 ± 0.011	0.0052						
Mn	94.97 ± 19.71	38.27 ± 5.67	0.4174						
As	8.20 ± 0.82	0.186 ± 0.054	0.0225						
Pb	7 141.63 ± 1 652.99	2.21 ± 0.60	0.0003						
Cu	8 449.44 ± 1 280.39	12.48 ± 0.87	0.0015						
Mg	3 520.83 ± 1 704.61	259.71 ± 25.96	0.0952						
Cd	10.71 ± 2.21	0.241 ± 0.062	0.0236						
Ni	31.70 ± 4.32	2.46 ± 0.40	0.0790						
Fe	$4\ 367.50 \pm 1\ 000.12$	122.36 ± 10.80	0.0295						
Zn	40 692.08 ± 13 375.85	20.37 ± 1.54	0.0006						
Cr	19.15 ± 3.71	4.01 ± 0.34	0.2160						
· · · · · · · · · · · · · · · · · · ·									

*Enrichment coefficient = content of trace element in plant/content of trace element in soil.

TABLE-4										
CORRELATION COEFFICIENT BETWEEN TRACE ELEMENTS IN A. sinensis										
	Hg	Mn	As	Pb	Cu	Mg	Cd	Ni	Fe	Zn
Mn	0.271	-	-	-	-	-	-	-	-	-
As	-0.311	0.211	-	-	-	-	-	-	-	-
Pb	-0.421	-0.297	0.372	-	-	-	-	-	-	-
Cu	-0.091	0.268	0.367	-0.020	-	-	-	-	-	-
Mg	-0.020	0.208	0.578*	0.063	0.307	-	-		-	-
Cd	-0.030	-0.449	0.146	0.285	-0.683**	0.104	-	-	-	-
Ni	0.181	0.242	-0.673**	-0.328	-0.076	-0.366	-0.418	_	_	-
Fe	-0.062	0.394	-0.288	-0.644*	0.193	-0.032	-0.455	0.577*	-	-
Zn	0.500	0.412	0.243	-0.212	0.415	0.336	-0.165	-0.028	0.137	_
Cr	0.117	-0.104	-0.187	0.186	-0.028	0.266	0.256	0.128	0.115	-0.037
*Completing is significant at the 0.05 local **Completing is significant at the 0.01 local The same halos										

*Correlation is significant at the 0.05 level. **Correlation is significant at the 0.01 level. The same below.

TABLE-5											
CORRELATION COEFFICIENT BETWEEN TRACE ELEMENTS IN SOIL AND A. sinensis											
Plant		Soil									
	Hg	Mn	As	Pb	Cu	Mg	Cd	Ni	Fe	Zn	Cr
Hg	0.416	-0.093	-0.121	0.191	0.249	-0.275	0.333	0.025	0.241	0.293	-0.122
Mn	0.327	-0.093	0.407	0.252	-0.644*	-0.219	0.010	-0.016	-0.489	0.249	0.312
As	-0.381	-0.222	0.550^{*}	-0.353	-0.299	0.094	-0.480	-0.126	-0.346	-0.467	0.341
Pb	-0.267	-0.323	0.269	-0.332	0.118	0.019	-0.554*	0.334	-0.255	-0.402	0.018
Cu	0.449	0.612^{*}	0.310	-0.080	-0.224	0.490	-0.207	-0.165	-0.405	-0.099	-0.264
Mg	-0.117	-0.171	0.479	-0.156	-0.126	0.201	-0.424	-0.107	-0.230	0.028	0.444
Cd	-0.775**	-0.492	-0.207	-0.483	0.512	-0.288	-0.181	-0.051	0.342	-0.344	0.132
Ni	0.495	0.275	-0.168	0.536^{*}	-0.064	0.181	0.038	-0.178	-0.055	0.525	-0.255
Fe	0.311	0.543^{*}	-0.294	0.308	-0.399	0.015	0.152	-0.406	-0.174	0.477	-0.056
Zn	0.249	0.272	-0.095	0.158	0.186	-0.007	-0.015	0.090	-0.436	0.198	-0.363
Cr	0.078	0.127	-0.199	-0.549*	0.249	-0.160	-0.351	-0.312	0.085	-0.071	0.017

Conclusion

Determination of 11 elements in *A. sinensis* and soil by ICP-AES was performed. The soil contained Zn, Cu, Pb, Fe and Mg in larger contents than other elements and *A. sinensis* contained Mg, Fe, Mn, Zn and Cu in larger contents than other elements. For the enrichment coefficient of the 11 trace elements in *A. sinensis*, the *A. sinensis* had stronger enrichment ability on Mn, Cr and Mg. In the *A. sinensis*, As-Mg, Ni-Fe showed strong positive correlation while As-Ni, Cu-Cd, Pb-Fe showed negative correlation. Meanwhile, As(plant)-As(soil), Cd(plant)-Hg(soil), Cu(plant)-Mn(soil) and Ni(plant)-Pb(soil) show strong positive correlation, while Mn(plant)-Cu(soil), Pb(plant)-Cd(soil) and Cr(plant)-Pb(soil) show negative correlation. This study provided a theoretical basis for the quality evaluation of *A. sinensis*.

ACKNOWLEDGEMENTS

This work was sponsored by the Science and Technology Innovation Project of Yunnan Province, China (Grant No. 2007C0219Z-10).

REFERENCES

- R.H. Shan, M.L. She and T.S. Wang, Flora of China Science Press, Beijing, Vol. 55, p. 41 (1992).
- Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China, China Medical Science and Technology Press, Beijing, Vol. 1, p. 124 (2010).

- 3. S.H. Huang, C.C. Chen, C.M. Lin and B.H. Chiang, *J. Food Compos. Anal.*, **21**, 402 (2008).
- 4. Y.L. Zeng, China J. Chin. Mat. Med., 5, 66 (1959).
- 5. Y.H. Wang, J.C. Xu, Y.H. Li and S.J. Pei, *Acta Bot. Yunnanica*, **14S**, 41 (2003).
- 6. E.K. Osae, J. Radioanal. Nucl. Chem., 250, 173 (2001).
- J.Y. Zhang, Y.Z. Wang, H. Jin and W.Z. Yang, Spectrosc. Spect. Anal., 29, 2247 (2009).
- R.P. Choudhury, A.V. Reddy and A.N. Garg, *Biol. Trace Elem. Res.*, 120, 148 (2007).
- F. Tuo, D.H. Li and F.Q. Zhou, J. Radioanal. Nucl. Chem., 284, 507 (2010).
- 10. C.C. Han, J. Li and Q.S. Hui, Biol. Trace Elem. Res., 122,122 (2008).
- M.A. Ebrahimzadeh, S.M. Nabavi, S.F. Nabavi, S. Eslami and A.R. Berkhradnia, *Asian J. Chem.*, 22, 6257 (2010).
- 12. S. Upadhyaya, E. Khatiwora and L.R. Saikia, *Asian J. Chem.*, **22**, 4330 (2010).
- S. Ra•ic, A. Onjia, S. Đogo, L. Slavkovic and A. Popoviec, *Talanta*, 67, 233 (2005).
- 14. I. Naeem, H. Mubeen and Z. Saddiqe, Asian J. Chem., 22, 4387 (2010).
- J.L. Qin, Z.F. Chen, Y.C. Liu and H. Liang, Spectrosc. Spect. Anal., 22, 4330 (2009).
- 16. S. Basgel and S.B. Erdemoglu, Sci. Total Environ., 359, 82 (2006).
- W. Zhang, Z.Y. Zhang, Y.Z. Shi and G.Q. Fang, *Spectrosc. Spect. Anal.*, 26, 963 (2006).
- J.S. Negi, P. Singh, M.S.M. Rawat and G.J.N. Pant, *Biol. Trace Elem. Res.*, 133, 350 (2010).
- Y.W. Zeng, L.X. Wang, J. Du, S.M. Yang, Y.C. Wang, Q.W. Li, Z.H. Sun, X.Y. Pu and W. Du, *Spectrosc. Spect. Anal.*, 29, 1413 (2009).
- E.A.H. Pilon-Smits, C.F. Quinn, W. Tapken, M. Malagoni and M. Schiavon, *Curr. Opin. Plant Biol.*, 12, 267 (2009).