Asian Journal of Chemistry; Vol. 23, No. 10 (2011), 4508-4510

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Synthesis and Characterization of Some Oxo and Dioxovandium(IV & V) Chelates with Thioamide Ligands

R.N. PANDEY^{*} and KALPANA SHAHI

Post Graduate Centre of Chemistry, College of Commerce, Patna-800 020, India

*Corresponding author: E-mail: rameshwarnath.pandey@yahoo.com; drkalpanashahi@gmail.com

(Received: 8 December 2010;

Accepted: 27 June 2011)

AJC-10087

Some oxo and dioxovanadium(IV & V) chelates of methyl, methoxy, ethoxy, hydroxyl and chloro derivatives of 1-substituted phenyltetrazoline-5-thione have been prepared and characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR, electronic and ¹H NMR spectral studies. Tentative octahedral structure to dioxovanadium(V) and square pyramidal (C_{4V}) structure to oxovanadium(IV) chelates is assigned.

Key Words: VO²⁺, VO₂⁺, Complexes, Thioamide ligands.

INTRODUCTION

Vanadium is a physiologically important trace element that is found in cationic, anionic and neutral complexed form with various oxidation states¹⁻³. Oxovanadium(IV) complexes are very interesting as model compounds for the clarification of several bio-chemical process⁴. The *bis*(maltolato) oxovanadium(IV) is reported to be first orally active insulin mimetic agent⁵. Moreover, several investigations into biologically relevant vanadium compounds have been made⁶⁻⁹. The present study describes some new *bis*-metal chelates of oxovanadium(IV) and dioxovanadium(V) with physiologically active *para*-substituted 1-phenyl tetrazoline-5-thiones¹⁰.

EXPERIMENTAL

All chemicals used were of CP-grade or AR-grade. The ligands, *para*-substituted methyl (m.p. = 149 °C), methoxy (m.p. = 160 °C), ethoxy (m.p. = 250 °C), hydroxyl (m.p. = 161 °C) and chloro (m.p. = 157 °C) derivatives of 1-phenyl tetraz-oline-5-thione were prepared by the method reported in literature¹¹.

All complexes were prepared by reported method¹² at pH = 8. Carbon, hydrogen and nitrogen analysis were done at the micro-analytical section of CDRI, Lucknow (India). The magnetic moments of the complexes were measured at 300 K using gouy balance. The IR spectra of ligands and complexes were recorded by means of Perkin-Elmer 521 spectrophotometer using KBr pellets. The electronic spectra were recorded with Zeiss (Jena) model of automatic recording system. ¹H NMR spectra of ligands and complexes were recorded with

90 MHz NMR spectrophotometer in $CDCl_3$ solution using TMS as the internal indicator in the range of 0-10 ppm. Molar conductance of complexes were measured in DMF (10⁻³ M) using Wiss-Werkstatter weithem obb type conductivity meter.

RESULTS AND DISCUSSION

Elemental analyses of the metal chelates confirm their stoichiometry as indicated in Table-1. These bis-chelates are high melting, coloured solid and were found to be insoluble in most of solvent. The 10⁻³ M solution of complexes (sl. no. 1 to 5) exhibited molar conductance value between 60-75 Ω^{-1} cm² mol⁻¹ indicating uni uni electrolytic nature of all dioxovanadium(V) complexes and chlorine is present in the outer sphere of complexes. All complexes were found to be diamagnetic indicating d° -configuration of VO₂⁺ species. These observations are further supported by electronic spectra of complexes. Two strong bands in the UV region was observed (Table-2) due to intraligand charge transfer. No absorption was attributed between 400 to 800 nm as expected for metal ions with $(n-1)d^{0}ns^{0}$ electronic configuration¹³. Barnum¹⁴ and Lintvedt *et al.*¹⁵ have also suggested a strong absorption at about 270-232 nm for vanadate(V) ion, which clearly originate in ${}^{1}t_{1} \rightarrow 2e$ transition.

The magnetic moment of oxovanadium(IV) chelates were observed between 1.66-1.68 BM, which are close to the spin value (1.73 BM) for one unpaired electron. Thus, $VO^{2\pm}$ species are momomeric nature and absence of metal-metal interaction was assumed. The electronic spectra of complexes display strong band at 11834 cm⁻¹ assigned to charge transfer and two strong bands at 11834 cm⁻¹ ($^{2}B_{2}\rightarrow$)A₁) and at 22471 cm⁻¹

TABLE-1								
ANALVI ICAL	AND PHYSICAL DATA OF VANADILIM COMPLEYES							

ANALILICAL AND HITSICAL DATA OF VANADIUM COMPLEXES										
51	Complex/	Colour/ M. Pt. (°C)	Analysis (%) : Found/(calcd)				Molar			
No.	(Molecular Formula)		С	Н	Ν	V	cond. $\Lambda^{-1}{}_{m}$ cm ² mol ⁻¹			
1.	$VO_2(P-CH_3-L)_2Cl\cdot 2H_2O(V\cdot C_{16}H_{18}N_8O_4S_2Cl)$	Violet (302)	35.80 (35.79)	3.51 (3.35)	20.91 (20.87)	9.50 (9.99)	73.3			
2.	$[VO_2(P-CH_3O-L)_2]Cl \cdot 4H_2O, (VC_{16}H_{24}N_8O_8S_2Cl)$	Violet (295)	31.82 (31.66)	4.01 (3.96)	18.52 (18.46)	8.41 (8.39)	76.2			
3.	[VO ₂ (P-CH ₃ CH ₂ O-L) ₂]Cl, (VC ₁₈ H ₂₀ N ₈ O ₄ S ₂ Cl)	Violet (305)	38.56 (38.40)	3.58 (3.55)	20.01 (19.91)	9.11 (9.05)	69.8			
4.	$[VO_2(P-Cl-L)_2]Cl, (VC_{14}H_{10}N_8O_2S_2Cl_3)$	Violet (307)	31.01 (30.91)	1.89 (1.84)	20.72 (20.60)	9.51 (9.37)	72.3			
5.	[VO ₂ (P-OH-L) ₂]Cl·2H ₂ O, (VC ₁₄ H ₁₆ N ₈ O ₆ S ₂ Cl)	Grey (290)	31.01 (30.97)	3.02 (2.94)	20.72 (20.64)	9.51 (9.40)	71.6			
6.	$[VO(P-CH_3O-L)_2]\cdot 3H_2O, (VC_{16}H_{22}N_8O_6S_2)$	Grey (300)	35.78 (35.75)	4.32 (4.10)	20.95 (20.85)	9.51 (9.48)	nc			
7.	$[VO(P-Cl-L)_2] \cdot 3H_2O, (VC_{14}H_{16}N_8O_4Cl_2S_2)$	Violet (295)	30.79 (30.77)	2.98 (2.93)	20.66 (20.51)	9.35 (9.33)	nc			
$LH=C_7H_6N_4S$ (1-phenyl litrazoline-5-thione)										

TABLE-2 CHARACTERISTICS BAND S cm⁻¹ OF THE IR SPECTRA AND ELECTRONIC SPECTRA OF LIGANDS AND THEIR VANADIUM COMPLEXES IR Bands (cm⁻¹) Electronic spect. Compd. Thioamide Bands v (V=O) Bands (Assignment, vNH Ι Π III IV Ligand 32780 ($\pi \rightarrow \pi^x$) 1286(s) 1060m 3080 (mb) 1504(s) 790(m) (---) (P-CH₃-LH) 31250 $(n \rightarrow \pi^x)$ Complex 33333 (CT Band) 1485(s) 1310(m) 1035(m) 765(m) 830(s) (Sl. No.1) 31250 (CT Band) Ligand 33003 ($\pi \rightarrow \pi^{x}$) 3070 (mb) 1504m 1286(m) 1050m 790(m) (P-CH₃O-LH) 31740 (n $\rightarrow \pi^x$) Complex 31645 (CT Band) 1478(s) 1325 (m) 1025m 770(m) 845(s) (Sl. No. 2) 30760 (CT Band) Ligand 33890 ($\pi \rightarrow \pi^x$) 1510m 1280(m) 1020(m) 845(s) 3095 (mb) 780(m) (P-CH₃CH₂O-LH) 30303 (n $\rightarrow \pi^x$) 207050 (SB) Complex 1485(s) 1315(m) 1010(m) 770(m) 840(s) (Sl. No. 3) (CT Band) Ligand 33445 ($\pi \rightarrow \pi^x$) 3090 (mb) 1500(s) 1280m 1055(m) 810(m) (--)(P-Cl-LH) 31545 (n $\rightarrow \pi^x$) Complex 37000 (sb) 1485(s) 1320(s) 1035(m) 790(m) 840(s) (Sl. No. 4) (CT Band) Ligand 33550 ($\pi \rightarrow \pi^x$) 3072 (mb) 1510(s) 1290(m) 805(m) 1060(m)(---) (P-OH-LH) 32250 (n $\rightarrow \pi^x$) Complex 43280 (sb) 1577(s) 1340(m) 1045(m) 785(m) 835(s)(Sl. No. 5) (CT Band) Complex 27173 (CT Band) (Sl. No. 6) 22471 ($^{2}B_{2}(p)$ →E) 1478(s) 1310(m) 1030(m) 780(m) 930(s) 11834 ($^{2}B_{2} \rightarrow ^{1}A_{1}$) 31250 (CT Band) Complex (Sl. No. 7) 1480(s) 1325(m) 1035(s) 775(m) 940(s) 20833 ($^{2}B_{2} \rightarrow E$) 13157 ($^{2}B_{2} \rightarrow ^{1}A_{1}$)

LH=1-phenyl tetrazoline-5-thione; Sl. No. indicate complexes listed in Table-1

 $[^{2}B_{2}(p)\rightarrow E]$ are in agreement with square pyramidal configuration achieved earlier^{16,17}.

IR Spectra : The IR bands of interest of the ligands and complexes are discussed here. A comparison of spectra of ligands and complexes indicate the simultaneous V-S and V-N bonding in all complexes. The v(SH) and v(N-H) bands of ligands disappears on complexation indicating deprotonation of imino protons and formation of vanadium-N bond. Oxovanadium(IV & V) cation are a class-'A' cation³ and interacts with N-donor ligands with deprotonation in basic medium (pH = 8).

Agarwala et al.¹⁸ and Suzuki¹⁹ have performed normal coordinate analysis (NCA) of thioamide ligands. Thioamide ligands give rise to four characteristic thioamide bands²⁰⁻²² in the region of 1500 cm⁻¹ (band I), 1300 cm⁻¹ (band II), 1000 cm⁻¹ (band III) and 800 cm⁻¹ (band IV). These bands are mixed

band having contributions from ν (C=S), ν (C=N), δ (C-H) δ (NH) modes. The blue shift of thioamide band II (30-35 cm⁻¹), red shift band I (20 cm⁻¹) band III (20-30 cm⁻¹) and band IV (30-40 cm⁻¹), suggest simultaneous (V-N) and (V-S) bonding on complexation²⁰⁻²². These observations are further supported by new bands at 455 cm⁻¹ v(V-N) and at 310 cm⁻¹ v(V-S) in far-IR spectra of complexes²³.

cm⁻¹)

The presence of strong single band at 840-830 cm⁻¹ in all dioxovanadium(V) complexes indicate two oxogroups are at transposition in octahedral configuration¹². However, oxovanadium(IV) complexes display strong band at 940-930 cm^{-1} assigned to v(V=O) mode¹² in monomeric complexes.

¹H NMR Spectra: To substantiate further bonding in the complexes, ¹H NMR spectra of ligands and some complexes (Sl. No. 1, 6 & 7) were recorded in CDCl₃/TMS. The broad multiplet in the region δ 7.42-7.81 ppm are observed in these complexes due to phenyl protons. The broad nature of peak may be due to large quadrupole resonances broadening effect of tetrazole nitrogen atoms²⁴. The resonances due to imino proton in the ligands observed at $\delta 1.25$ -1.28 ppm is absent in the spectra of complexes suggesting the formation of V-N bond and deprotonation of N-H group on complexation²⁵. The methoxy protons observed as a sharp singlet at $\delta 3.70$ ppm in complexes concides with that of methoxy group protons in literature²⁶. The methyl protons of coordinated ligands are observed at $\delta 2.45$ ppm²⁶.

Tentative octahedral structure of dioxovanadium(V) chelates (R=CH₃, CH₃O, CH₃CH₂O, OH, Cl)

Tentative square pyramidal structure of oxovanadium(IV) chelates (R=CH₃, CH₃O, CH₃CH₂O, OH, Cl)·

Thus, on the basis of aforesaid observations, octahedral structure to dioxovanadium(IV) (str. I) and square pyramidal (C_{4V}) structure to oxovanadium(IV) (str. II) chelates may be assigned.

REFERENCES

- 1. D.G. Barceloux, J. Toxicol-clin. Toxicol., 37, 265 (1999).
- 2. I.G. Macara, Trends Biochem. Sci., 5, 92 (1980).
- 3. J. Selbin, Coord. Chem. Rev., 1, 293 (1966).
- 4. A.H. Kianfar and S. Mohebbi, J. Iran. Chem. Soc., 4, 215 (2007).
- Y. Sun, B.R. James, S.J. Retting and C. Orvig, *Inorg. Chem.*, 35, 1667 (1996).
- 6. Y.H. Xing, K. Aoki and F.Y. Bai, J. Coord. Chem., 57, 157 (2004).
- 7. A. Butler and C.J. Carrano, Coord. Chem. Rev., 109, 61 (1991).
- 8. R. Wever and K. Kustin, Adv. Inorg. Chem., 35, 81 (1990).
- 9. H. Sakkurai, A. Tamura, J. Fugono, H. Yasui and T. Kiss, *Coord. Chem. Rev.*, **245**, 31 (2003).
- A.J. Cowper, R.R. Astik and K.A. Thaker, J. Indian Chem. Soc., 58, 1087 (1981).
- 11. E. Lieber and J. Ramchandran, Can. J. Chem., 37, 101 (1959).
- R.N. Pandey, R.N. Sharma, L.M. Roy Choudhary and P. Sharma, J. Indian Chem. Soc., 69, 719 (1992).
- 13. T.M. Dunn, R.S. Nyholm and S. Yamada, J. Chem. Soc., 1564 (1962).
- 14. D.W. Barnum, J. Inorg. Nucl. Chem., 21, 221 (1961).
- 15. R.L. Lintvedt and L.K. Kernitsky, Inorg. Chem., 9, 491 (1970).
- A.A. Ahmed, S.A. Benguzzi and O.M. Ahshad, *Rasayan J. Chem.*, 2, 781 (2009).
- 17. R.K. Narla, Y. Dong, O.J. D' Cruz, C. Navara and F.M. Uckun, Clin.
- *Cancer Res.*, **6**, 1546 (2000). 18. U. Agarwala and P.B. Rao, *Indian J. Pure Appl. Phys.*, **7**, 229 (1969).
- 19. I. Suzuki, Bull. Chem. Soc. (Japan), 35, 1419 (1962).
- B. Singh, R. Singh, R.V. Choudhary and K.P. Thakur, *Indian J. Chem.*, 11, 174 (1973).
- 21. R.N. Pandey, G. Kumari and R.K. Singh, J. Indian Coun. Chem., 27, 72 (2010).
- R.N. Pandey, R.K. Singh, Priya and M. Ranjan, Asian J. Chem., 22, 5595 (2010).
- 23. S.N. Shetti, A.S.R. Murty and G.L. Tembe, *J. Indian Chem. Soc.*, **73**, 91 (1996).
- 24. R.N. Pandey, R. K. Singh and R.J. Sinha, Acta Cien. Ind., 35c, 505 (2009).
- 25. R.N. Pandey and R.K. Singh, Orient. J. Chem., 25, 599 (2009).
- R.N. Pandey, A. Anand, R.K. Singh and A. Kumar, *Asian J. Chem.*, 22, 5601 (2010).