

Synthesis and Antibacterial Activity of Some Pyrimidines Containing β-Lactams

RAM CHANDER MERUGU^{1,*}, D. RAMESH² and B. SREENIVASULU³

¹Department of Biochemistry, Mahatma Gandhi University, Nalgonda-508 001, India ²Department of Chemistry, Mahatma Gandhi University, Nalgonda-508 001, India ³Centre for Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Hyderabad-500 085, India

*Corresponding author: E-mail: rajumerugu01@rediffmail.com

(Received: 1 December 2010;

Accepted: 24 June 2011)

AJC-10084

1-[4-(4-Methylpiperazin-1-yl)phenyl]ethanone on condensation with aryl aldehydes afforded 1-[4-(4-methylpiperazin-1-yl)phenyl]-3substituted phenyl prop-2-en-1-one (**1a-e**) in good yields, which underwent cyclization with guanidine hydrochloride (**2**) furnished 4-[4-(4-methylpiperazin-1-yl) phenyl]-6-substituted phenyl pyrimidin-2-amine (**3a-e**) followed by condensation of (**3a-e**) with benzaldehyde (4) yielded N-benzylidene-4-[4-(4-methylpiperazin-1-yl) phenyl]-6-substituted phenyl pyrimidin-2-amine (**5a-e**). The cyclo condensation of compound (**5a-e**) with chloro acetyl chloride (**6**) in presence of triethylamine gave 3-chloro-1-[4-(4-(4-methylpiperazin-1-yl) phenyl]-6-substituted phenyl pyrimidin-2-yl)-4-phenylazetidin-2-one (**7a-e**). The structures of these pyrimidines were established by spectral data. All the new compounds have been screened for their antibacterial activity.

Key Words: Chalcones, Pyrimidines, Imines, β-Lactams, Antibacterial activity.

INTRODUCTION

The synthesis and pharmacological activity of condensed pyrimidine derivatives have been reported. To prepare new pyrimidine derivatives we used chalcone as a starting material. Chalcones are 1,3-diary-1-2-propene-1-ones. Pyrimidines are important class of heterocyclic compounds, which possess wider range of pharmacological activities such as anticancer^{1,2}, antibacterial³, antiinflammatory⁴, antiviral⁵, antitubercular⁶, antihypertensive⁷ and anticonvulsant⁸, antihistamic⁹ activity. It is an established fact that imines show potent antitubercular¹⁰, antimicrobial¹¹, anticancer¹², antiviral¹³, antifungal^{13,14}, and antibacterial^{13,14} activities. The synthesis of azitidinone¹⁵ from aminopyridine have been reported earliar. Herein is reported a practical and efficient method for the synthesis of some novel pyrimidines and azitidinone. All the new compounds were characterized by their elemental analyses and their spectral data.

EXPERIMENTAL

Chemicals and solvents were reagent grade and used without further purification. Melting points were determined on a cintex m.p. apparatus and are uncorrected. The ¹H NMR were recorded in the indicated solvent on a Varian 500 MHz and 200 MHz spectrometer with TMS as internal standard. All chemical shifts (δ) were reported in ppm from internal

TMS. Mass spectra were measured on a a Jeol JMS D-300 spectrometer. Infrared spectra were recorded in KBr on Brucher-IFS-66 FT-IR spectrophotometer. The homogeneity of the compounds was checked using precoated TLC plates (E. Merk Kieselgel 60 F_{254}).

General procedure for the preparation of chalcone derivatives (1a-e): A mixture of 1-[4-(4-methylpiperazin-1yl)phenyl]ethanone (0.01 mole), aryl aldehydes (0.01 mol), an aqueous solution of 10 % KOH (10 mL) and methanol (20 mL) was refluxed for 8 h. After completion of the reaction as indicated by TLC, the reaction mixture was cooled to room temperature and poured into crushed ice and then acidified with hydrochloric acid. The separated solid was filtered and purified by recrystallization from ethyl acetate and methanol (7:3) to afforded (**1a-e**) (**Scheme-I**).

General procedure for the preparation of pyrimidines (**3 a-e):** A mixture of appropriate chalcones (**1a-e**, 0.01 mol) and guanidine hydrochloride (**2**) (0.01 mol) and alcoholic KOH (10 mL) was heated to reflux for 5 h. After completion of the reaction as indicated by TLC, the solvent was completely evaporated and the residue was poured into ice cold water. The precipitated solid was collected by filtration. The solid thus obtained was purified on silica gel column using ethyl acetate and methanol mixture (8:2) solvent system (**Scheme-I**). The chemical, spectral data and biological data of the compounds (**3a-e**) are presented in Tables 1-4.

Scheme-I. Synthesis of 3-chloro-1-(4-(4(4-methylpiperazin-1-yl) phenyl)-6-substituted phenyl pyrimidin-2-yl)-4-phenylazetidin-2-one (7a-e)

General procedure for the preparation of imines (5a-e) : A mixture of compound (**3a-e**, 0.01 mol), benzaldehyde (**4**) (0.01 mol), few drops of acetic acid and ethanol was heated at 65 °C for 4 h. After completion of the reaction as indicated by TLC, the solvent was completely evaporated and the residue was poured into ice cold water. The precipitated solid was collected by filtration. The solid thus obtained was crystallized from methanol (**5a-e**) (**Scheme-I**). The chemical, spectral data and biological data of the compounds (**5a-e**) are given in Tables 1-4.

TABLE-1

CHARACTERIZATION DATA OF COMPOUNDS							
(3a-e), (5a-e) AND (7a-e)							
Comp.	m.f.	m.p. (°C)	Yield (%)				
3 a	$C_{21}H_{23}N_5$	140	75				
3b	$C_{21}H_{22}N_5Br$	112	69				
3c	$C_{22}H_{25}N_5$	135	82				
3d	$C_{21}H_{23}N_5$	142	72				
3e	$C_{29}H_{27}N_5$	122	77				
5a	$C_{28}H_{27}N_5$	187	67				
5b	$C_{28}H_{27}N_5Br$	192	69				
5c	$C_{29}H_{29}N_5$	182	64				
5d	$C_{28}H_{27}N_5$	202	62				
5e	$C_{36}H_{31}N_5$	210	71				
7a	C ₃₀ H ₂₈ N ₅ OCl	210	67				
7b	C30H28N5OBrCl	215	62				
7c	C ₃₁ H ₃₀ N ₅ OCl	201	60				
7d	C30H28N5OCl	221	68				
7e	C ₃₈ H ₃₂ N ₅ OCl	218	65				

Elemental analyses for C, H, N are within \pm 0.4 % of the theoretical values. *Solvent for crystallization: Ethyl acetate: Methanol for (**3a-e**); Methanol for (**5a-e**) and (**7a-e**).

General procedure for the preparation of azetidin-2ones (7a-e): A mixture of compound (5a-e, 0.01 mol), choloroacetyl chloride (6) (0.02 mol), toluene (20 mL) and tri ethylamine (0.02 mol) were refluxed for 8 h. After completion of the reaction as indicated by TLC, the solvent was completely

SPECTRAL DATA OF THE COMPOUNDS					
	(3a-e), (5a-e) AND (7a-e)				
Comp.	¹ H NMR (DMSO-d ₆ , ppm)				
2-	2.3 (3H, s, CH ₃), 2.5-2.8 (8H, m, 4X CH ₂), 3.99 (2H,				
sa	brs,-NH ₂), 7.60 (1H, s, C-5-H), 6.58-7.83 (9H, m, Ar-H)				
	2.3 (3H, s, CH ₃), 2.5-2.8 (8H, m, 4XCH ₂), 4.26 (2H,				
3b	brs,-NH ₂), 6.6 (1H, s, C-2-H), 8.4 (1H, s, C-5-H), 6.9 –				
	8.2 (7H, m, Ar-H).				
3c 3d	$2.2 (3H, s, -CH_3), 2.37 (3H, s, -CH_3), 2.5-2.8 (8H, m, -2.2) (3H, s, -2.2) (3H$				
	$4ACH_2$), 5./4 (2H, DIS, -NH ₂), /.50 (1H, S, C-5-H), 0.52- 9.11 (9H m Ar H)				
	$\frac{0.11 (0\Pi, \Pi, AI-\Pi)}{2.2 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (8\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (2\Pi + m. 4XCH) + 2.02 (2\Pi + 0.11) (2.5 + 2.00) (2\Pi + 0.11) (2 \Pi + 0.11)$				
	$2.5 (5H, 8, CH_3), 2.5-2.99 (6H, III, 4ACH_2), 5.95 (2H, brs -NH) = 6.37 (1H + C_2 - OH) - 7.48 (1H + C_2 - 5-H)$				
	6.73-8.11 (8H, s, Ar-H).				
	2.3 (3H, s, CH ₂), 2.5-2.8 (8H, m, 4XCH ₂), 4.14 (2H,				
3e	brs,-NH ₂), 7.2 (1H, s, C-5-H), 6.75- 8.69 (13H, m-Ar-H).				
50	2.3 (3H, s, CH ₃) 2.5-2.8 (8H, m, 4XCH ₂), 7.60 (1H, s, C-				
5a	5-H), 6.58-7.83 (14H, m, Ar-H), 8.59 (1H, s, -N=CH).				
	2.3 (3H, s, CH ₃), 2.5-2.8 (8H, m, 4XCH ₂), 6.6 (1H, s, C-				
5b	2-H), 8.4 (1H, s, C-5-H), 6.9 – 8.2 (12H, m, Ar-H), 8.59				
	(1H, s, -N=CH).				
5c	2.2 (3H, s, -CH ₃), 2.37 (3H, s, -CH ₃), 2.5-2.8 (8H, m,				
	$4XCH_2$), 7.56 (1H, s, C-5-H), 6.52-8.11 (13H, m, Ar-H),				
	$\frac{6.59(1H, S, -N=CH)}{2.3(3H, S, CH)}$				
5d	2.5 (511, s, $C13$), 2.5-2.8 (611, iii, $4XC12$), 0.57(111, s, C^2 2-OH) 7.48 (1H s C-5-H) 6.73-8.11 (13H s Ar) 8.59				
Ju	(1H. sN=CH).				
_	2.3 (3H, s, CH ₂), 2.5-2.8 (8H, m, 4XCH ₂), 7.2 (1H, s, C-				
5e	5-H), 6.75- 8.69(18H, m-Ar-H), 8.59 (1H, s, -N=CH).				
	2.3 (3H, s, CH ₃) 2.5-2.8 (8H, m, 4XCH ₂), 5.1 (1H, d, -				
7a	CH-N), 5.5 (1H, d, -CH-Cl), 7.60 (1H, s, C-5-H), 6.58-				
	7.83 (14H, m, Ar-H).				
7b	2.3 (3H, s, CH ₃), 2.5-2.8 (8H, m, 4XCH ₂), 5.1 (1H, d, -				
	CH-N), 5.5 (1H, d, -CH-Cl), 6.6 (1H, s, C-2-H), 8.4 (1H,				
	s, C-5-H), 6.9–8.2 (12H, m, Ar-H).				
7c	$2.2 (3H, s, -CH_3), 2.37 (3H, s, -CH_3), 2.5-2.8 (8H, m, 4XCH)) = 5.1 (111 + CH Ch) = 5.5 (111 + CH Ch) = 7.56$				
	$4ACH_2$), 5.1 (1H, d, -CH-N), 5.5 (1H, d, -CH-Cl), 7.50 (1H $_{\circ}$ C 5 H) 6 52 8 11 (12H m Ar H)				
7d	(111, 8, C-3-11), 0.32-0.11 (1311, 11, AI-11).				
	CH-N), 5.5 (1H, d, -CH-Cl), 6.37 (1H, s, C-2-OH), 7.48				
	(1H, s, C-5-H), 6.73-8.11 (13H, s, Ar-H).				
7e	2.3 (3H, s, CH ₃), 2.5-2.8 (8H, m, 4XCH ₂), 5.1 (1H, d, -				
	CH-N), 5.5 (1H, d, -CH-Cl), 7.2 (1H, s, C-5-H), 6.75-				
	8.69 (18H, m-Ar-H).				
S: singlet; d: doublet ; dd: doublet of doublets; m: multiplet.					

TABLE-2

evaporated and the residue was poured into ice cold water. The precipitated solid was collected by filtration. The solid thus obtained was crystallized from methanol (**7a-e**) (**Scheme-1**). The chemical, spectral data and biological data of the compounds (**7a-e**) are in Tables 1-4.

	TABLE-3			
SPECTRAL DATA OF THE COMPOUNDS				
	(3a-e), (5a-e) AND (7a-e)			
Comp.	IR (KBr, cm ⁻¹)			
3a	1575 (C=C);1602 (C=N); 3194, 3431 (-NH ₂)			
3b	536 (C-Br); 1564 (C=C); 1598 (C=N); 3194, 3431 (-NH ₂)			
3c	1575 (C=C); 1603 (C=N); 3194, 3431 (-NH ₂)			
3d	1572 (C=N); 3194, 3431 (-NH ₂)			
3e	1567 (C=C);1602 (C=N); 3194, 3431 (-NH ₂)			
5a	1575 (C=C); 1602 (C=N); 2900 (C-H)			
5b	536 (C-Br); 1564 (C=C); 1598 (C=N); 2900(C-H)			
5c	1575 (C=C); 1603 (C=N); 2900 (C-H)			
5d	1572 (C=N); 2900 (C-H)			
5e	1567 (C=C); 1602 (C=N); 2900(C-H)			
7a	1575 (C=C); 1602 (C=N); 1610 (C=O), 2900 (C-H)			
7b	536 (C-Br); 1564 (C=C); 1598 (C=N); 1610 (C=O),			
	2900 (С-Н)			
7c	1575 (C=C); 1603 (C=N); 1610 (C=O), 2900 (C-H)			
7d	1572 (C=N); 1610 (C=O), 2900 (C-H)			
76	1567 (C=C): 1602 (C=N): 1610 (C=O) 2900 (C-H)			

Antibacterial activity: In vitro screening of newly prepared compounds for antibacterial activity was screened through agar-cup method. The bacterial species used were S. aureus, E.coli, S. typhi and B. subtilis. The results are given in Table-4.

TABLE-4

ANTIBACTERIAL SCREENING DATA OF THE COMPOUNDS (3a-e), (5a-e) AND (7a-e)						
	Inhibition zone in mm at 100µg/mL concentration					
Compound	Staphylococcus	Е.	Salmonella	В.		
	aureus	coli	typhi	Subtilis		
3a	06	08	6	12		
3b	10	7	6	5		
3c	4	9	8	5		
3d	3	7	4	9		
3e	-	-	8	8		
5 a	6	5	8	5		
5 b	-	6	12	6		
5 c	4	5	8	4		
5d	10	3	4	6		
5 e	5	2	-	8		
7a	2	6	3	9		
7b	3	10	7	-		
7c	10	-	12	10		
7d	4	12	5	13		
7e	9	9	_	12		
Chloramphenicol	19	23	24	18		

RESULTS AND DISCUSSION

Perusal of the above Table-4 reveals that the derivatives were growth inhibitory towards all the bacteria. In the synthesized compounds some compounds showed moderate to good activity while some were found to be inactive. **5a** and **5b** showed good activity. **7b** was effective against *S.typhi* but most derivatives did not show good inhibitory activity against this bacterium. Compounds **9d** and **9e** were potent against *E. coli*, *B. subtilis*. From the above study, it may be concluded that it is worthwhile to pursue further investigating by manipulating these novel pyrimidines.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, Indian Institute of Chemical Technology, Hyderabad for providing ¹H NMR and mass spectra.

REFERENCES

- 1. J. Mattew, A.V. Subba Rao and S. Rambhav, Curr. Sci., 53, 576 (1984).
- T. Yamakawa, H. Kagechika, E. Kawachi, Y. Hashimoto and K. Shedo, J. Med. Chem., 33, 1430 (1990).
- S. Isida, A. Matsuda, Y. Kawamura and K. Yamanaka, *Chromatography*, 8, 146 (1960).
- M.B. Hogale, N.P. Dhore, A.R. Shelar and P.K. Pawar, *Orient. J. Chem.*, 2, 55 (1986).
- V.K. Ahluwalia, L. Nayal, N. Kalia, S. Bala and A.K. Tahim, *Indian J. Chem.*, 26A, 384 (1987).
- 6. A.K. Bhat, R.P. Bhamana, M.R. Patel, R.A. Bellare and C.V. Deliwala, *Indian J. Chem.*, **10**, 694 (1972).
- 7. H. Ishitsuka, Y.T. Ninomiya, C. Ohsawa, M. Fujiu and Y. Suhara, *Antimicrob. Agents Chemother*, **22**, 617 (1982).
- 8. Y. Ninomiya, N. Shimma and H. Ishitsuka, Antiviral Res., 13, 61 (1990).
- Sk. A. Rahaman, Y.R. Prasad, P. Kumar and B. Kumar, *Saudi Pharm. J.*, 17, 24 (2009).
- S.B. Singh, M. Deepika, L.B. Lalith and G.L. Talesera, *Indian J. Chem.*, 43B, 1306 (2004).
- 11. B.M. Khadikar and S.D. Samant, Indian J. Chem., 32, 1137 (1993).
- V.K. Pandey, T. Sarah, T. Zehra, R. Raghubir, M. Dixit, M.N. Joshi and S.K. Bajpai, *Indian J. Chem.*, 43B,180 (2004).
- 13. S. Caddick, *Tetrahedron*, **51**, 10403 (1995).
- A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault and D. Mathe, *Synthesis*, 1213 (1998).
- 15. R.S. Varma, Green Chem., 1, 43 (1993).