Secondary Organic Aerosol Formation Mechanism by Heterogeneous Reaction of Isoprene with OH Radical: A Theoretical Study

Chenxi Zhang ${ }^{1}$, Xiaomin Sun ${ }^{1,2, *}$ and Wenxing Wang 1
${ }^{1}$ Environment Research Institute, Shandong University, Jinan 250100, P.R. China
${ }^{2}$ State Key Laboratiory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China
*Corresponding author: Fax: +86 531 88361990; Tel: +86 531 88364416; E-mail: sxmwch@sdu.edu.cn

(Received: 27 November 2010;
Accepted: 18 May 2011)
AJC-9967

The comprehensive mechanism of OH -isoprene system is reported. The profile of the potential energy surface was constructed and all of the possible channels were discussed. Geometries have been optimized at the B3LYP level with the 6-31+G** basis set. Part single-point energy calculations have been carried at the $\mathrm{QCISD}(\mathrm{T}) / 6-31+\mathrm{G}^{* *}$ or B3LYP/6-311++G(3df,2pd) level. Some polyols, for example 2-methylbutanetetraol, are identified, which are easy to take place the aerosol-phase heterogeneous chemical reactions in the formation of secondary organic aerosol. Physical properties such as heats of formation, standard entropies, Gibbs free energies of formation and solvation energies are determined using quantum mechanics method. The quantum mechanics results are used to calculate the equilibrium distributions of the available minima and the equilibrium constants (reported as $\log \mathrm{K}$) of aerosol-phase chemical reactions both in gasphase and aqueous-phase. The results of quantum mechanics calculations are potentially useful in determining the relative thermodynamic tendency for atmospheric aerosol-phase reactions.

Key Words: Isoprene, OH radical, Heterogeneous reaction, Secondary organic aerosol, Quantum mechanics.

INTRODUCTION

Hydrocarbons play an important role in atmospheric chemistry, whose photochemical oxidation results in a number of compounds that have major implications for local and regional air quality, acid deposition and the greenhouse effect ${ }^{1,2}$. Isoprene (2-methyl-1,3-butadiene) is the major biogenic non-methane hydrocarbon, which plays an important role in ozone formation in the local and regional atmosphere due to its high chemical reactivity and importance in the generation of peroxy radicals ${ }^{2}$. It is emitted by a wide variety of plants during daylight as a mechanism to protect plant membranes under conditions of extreme temperature and lack of water ${ }^{3}$. An accurate and complete knowledge of the atmospheric chemistry of isoprene is critical to the elucidation of chemical mechanisms in urban and regional environments. It well known that the atmospheric degradation of isoprene occurs via a multistep chemical process and the reaction with OH is the dominant tropospheric removal pathway.

Normally, the reaction between isoprene and OH occurs primarily by OH addition to the carbon-carbon double bonds resulting in one of four possible isomers. Then adducts react primarily with oxygen molecules under atmospheric conditions to form hydroxyalkyl peroxy radicals and subsequent
reaction with NO leads to the formation of hydroxyalkoxy radicals. The dominant tropospheric fate of the hydroxyalkoxy radicals is believed to be decomposition, leading to the formation of various oxygenated and organic nitrate compounds.

A number of groups have studied the OH -initiated oxidation reactions of isoprene. Several laboratory experiments have reported the temperature dependent rate constants of the reaction of isoprene with OH^{4-11} and have identified the major reaction products ${ }^{12-19}$ which include α, β-unsaturated carbonyls methyl vinyl ketone and methacrolein, formaldehyde and organic nitrates. However, there is also a notable absence of direct experimental data concerning the intermediate processes in the oxidation mechanism, largely due to experimental difficulty to detect the full spectrum of intermediate species and products of the isoprene reactions, although OH cycling experiments have provided indirect information on the intermediate processes. Thus, more and more researches pay attention to the theoretical study. After 2000, North and Zhang and others reported continuously the main final product yields in isoprene oxidation and the subsequence reaction at the $\operatorname{CCSD}(\mathrm{T}) / /$ B3LYP/6-31G** level ${ }^{20-28}$. Claeys et. al. observed new polyols i.e., 2-methylthreitol and 2-methylerythritol, in secondary organic aerosols (SOA). The formation mechanism can be explained by OH radical-initiated photooxidation of isoprene ${ }^{29}$.

Recently, a possible mechanism for furan formation in the tropospheric oxidation of dienes was proposed in which cyclization of the carbon chain necessarily involves a cisconformation ${ }^{30}$.

In this study, we report ab initio calculations for the formation of the adduct radicals from the reaction of OH with isoprene and the subsequent reactions. The geometries, energies and physical properties of the main isomers are presented. We also investigate the activation energies against OH migration transforming the higher energy isomers into the lower energy ones. On the basis of ab initio calculation, the equilibrium distributions of the main available minima and the equilibrium constants of aerosol-phase chemical reactions including in gasphase and aqueous-phase are calculated which is helpful to estimate the tendency of the heterogeneous reaction.

Incontestably, the estimation of free energies using quantum methods has some insuperable disadvantages currently. But in the evaluation of thermodynamic tendency of various reactions, the emphasis is not on the absolute but relative changes in the free energies, quantum methods can still provide many useful information, specially for species with no available data.

COMPUTATIONAL METHOD

Geometry optimization: The density functional theory (DFT) becomes a powerful calculation tool in computational chemistry due to the merits in itself ${ }^{31-34}$. In addition, the selection of basis set is of great importance in getting accurate results ${ }^{35}$. This point of view has been widely accepted that the system containing H -bond should adopt the polarization and diffuse functions. Therefore, B3LYP and $6-31+\mathrm{G}^{* *}$ are combined to optimize structures at stationary points in all the reaction paths in our work. Reactants, intermediate, transition state and products are investigated through vibrational analysis and at the same time IRC is carried out to determine the correctness of transition states. To test DFT computational results, single point energy calculation is performed using higher-level calculations Quadratic CI calculation including single and double substitutions with a triples correction to the energy [abbreviated as QCISD(T)] with the same basis sets. Relative energy comparison obtained from the above methods is made and the same variational tendency indicates that the results of the DFT method are reliable. All the work is performed using the Gaussian 03 programs ${ }^{36}$ and SGI workstation.

Equilibrium distributions: To evaluate the equilibrium distributions of all the available minima qualitatively, the relative Gibbs free energy has been calculated at the room temperatures. The formula used can be described as follows:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{T}(\mathrm{i})}=\frac{\mathrm{e}^{-\Delta \mathrm{G}_{\mathrm{T}(\mathrm{i})} / R T}}{\sum_{\mathrm{i}} \mathrm{e}^{-\Delta \mathrm{G}_{\mathrm{T}(\mathrm{i})} / \mathrm{RT}}} \tag{1}
\end{equation*}
$$

where $\Delta \mathrm{G}_{\mathrm{T}(\mathrm{i})}$ is the Gibbs free energy of isomer i at temperature T relative to the global minimum and R is the ideal gas constant.

Equilibrium constants: To calculate equilibrium constants (K) of the reactions ${ }^{37}$, the standard Gibbs free energy of a reaction $\left(\Delta \mathrm{G}_{\mathrm{r}}^{0}\right)$ which is are needed and can be calculated by
the standard Gibbs free energy of formation $\left(\Delta \mathrm{G}^{0}\right)$.The standard Gibbs free energy of a reaction is also related to the equilibrium constant (K) according to the fundamental equation:

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{r}}^{0}=\sum_{\mathrm{j}} \mathrm{v}_{\mathrm{j}} \Delta \mathrm{G}_{\mathrm{f}, \mathrm{j}}^{0}=-\mathrm{RT} \ln \mathrm{~K} \tag{2}
\end{equation*}
$$

where v_{j} is the stoichiometric coefficient for j in the reaction and $\Delta \mathrm{G}_{\mathrm{f}, \mathrm{j}}^{0}$ is the standard Gibbs free energy of formation for j . $\Delta \mathrm{G}_{\mathrm{f}, \mathrm{j}}^{0}$ can be determined using gas-phase heats of formations and standard entropies $\left(\Delta \mathrm{G}_{\mathrm{f}, \mathrm{j}}^{0}=\Delta \mathrm{H}_{\mathrm{f}, \mathrm{j}}^{0}-\mathrm{T} \Delta \mathrm{S}_{\mathrm{f}, \mathrm{j}}^{0}\right)$. Then, as illustrated by Scheme-I, the free energy of reaction in aqueous solution, $\Delta \mathrm{G}_{\mathrm{r}}^{0}(\mathrm{aq})$ is related to the gas-phase free energy of reaction, $\Delta \mathrm{G}_{\mathrm{r}}^{0}(\mathrm{gas})$ by adding the solvation energies of the species, $\Delta \mathrm{G}_{\mathrm{s}}^{0}$.

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{r}}^{0}(\mathrm{aq})=\Delta \mathrm{G}_{\mathrm{r}}^{0}(\text { gas })+\sum_{\mathrm{j}} \mathrm{v}_{\mathrm{j}} \Delta \mathrm{G}_{\mathrm{s}}^{0} \tag{3}
\end{equation*}
$$

All the necessary quantities ($\Delta \mathrm{G}_{\mathrm{f}, \mathrm{j},}^{0}, \Delta \mathrm{~S}_{\mathrm{j}}^{0}$ and $\Delta \mathrm{G}_{\mathrm{s}}^{0}$) can be determined by quantum mechanics, It should be noted here that proper standard state conditions should be used for the free energy calculations in eqn. 3. The standard state for gasphase reactions is 1.0 atm at 298.15 K , while the standard state for aqueous solution is $1.0 \mathrm{~mol} / \mathrm{L}$ at 298.15 K .

Scheme-I: Thermodynamic cycle for computation of Gibbs free energy changes of reaction in the gas phase and solution

As for the gas-phase standard heats of formation, Gibbs free energies of formation and solution-phase energy, the calculated methods are discussed ${ }^{37}$. It should be pointed out that the polarized continuum model (PCM$)^{38,39}$ is chosen to calculate the solvation energy. The solvation energy ($\Delta \mathrm{G}_{\mathrm{s}}{ }_{\mathrm{s}}$) describes the interaction of a solute with a surrounding solvent. The polarized continuum model have proved flexible and accurate, in particular, when the solute is accommodated in a cavity of realistic molecular shape and has been widely used for the study of many chemical processes. Water is chosen in this study because it is often the most important component in aerosols. Once solvation energies, $\Delta \mathrm{G}_{\mathrm{s}}^{0}$, for both the parent compounds and reaction products are obtained, the equilibrium constants of the solution reactions can be calculated.

RESULTS AND DISCUSSION

Isomerization of trans/cis-isoprene: It is not difficult to find two isomers of isoprene, usually labeled trans-isoprene and cis-isoprene. The trans-isoprene is more stable than the cis-isoprene from the aspect of energy. However, the cisisoprene may also exit stably. What's more it is one of the important reagents in the Diels-Alder synthesis reaction. The trans-isoprene could be converted into the cis-isoprene after
passing the potential barrier $4.69 \mathrm{kcal} / \mathrm{mol}$. The energy of the cis-isoprene relative to that of the trans-isoprene is $+3.40 \mathrm{kcal} /$ mol . In the geometry of the transition state, the dihedral angle $\angle \mathrm{C} 1 \mathrm{C} 4 \mathrm{C} 5 \mathrm{C} 7$ is -103.1°. The geometry parameters of the transisoprene, the transition state and the cis-isoprene is listed in Fig. 1. It can be seen that the trans-isoprene has a planar structure while cis-isoprene and the isomerization transition state have non-planar ones. At the room temperature, the equilibrium distribution of cis-isoprene/trans-isoprene is about 0.05:0.95. Since the reaction between isoprene with - OH takes place during the daylight and the isomerization barrier between the trans-isoprene and the cis-isoprene is not high, the reactions of both the trans-isoprene and the cis-isoprene with -OH should be taken into account when the mechanism is studied. 3-Methylfuran is one of the products in the OH -initiated oxidation reactions of isoprene. Recently, a possible mechanism for furan formation was proposed in which the framework of furan results from the cis-isoprene.

Addition reaction of $\mathbf{O H}$-initiated reactions: Since the addition of OH to the double bonds of isoprene proceeds without a barrier, the abundant energy adducts can be obtained directly. It has been widely accepted that - OH may add to any of the four carbon atoms of trans/cis-isoprene to form
hydroxyl alkyl radicals. Subsequently, hydroxyl alkyl radicals can react with - OH radical till to the formation of methylbutanetetraols passing through methylbutenediols and methylbutanetriol radicals. Methylbutanetetraols have been observed in experiment. All the possible reaction paths of trans/ cis-isoprene with OH radicals are given in Fig. 2. For the sake of convenience, the adducts are labeled t - or c-according to the carbon skeleton coming from the trans- or cis-isoprene and the Arabian numbers are the adding position of OH group to the isoprene molecule. For example, the label $t-1$ implies that the OH group is added to the C 1 position of transisoprene.

Methylbuteneol radicals: In the first step, when -OH is added to the t / c-isoprene, four groups of adducts is formed because of the different adding positions which are labeled $t / c-1, t / c-2, t / c-3$ and $t / c-4$, respectively. Those adducts belong to the alkene-ol compounds. Because of the stereochemistry of OH group, every adduct of each position has three isomers which are labeled as a, b and c . The transformation of different isomers between both the same adding position and different adding position can be occurred easily, which deepen the complexity of the reaction paths. The schematic potential energy surfaces of the reactions t / c-isoprene with OH are drawn

t-isoprene

TS 1

c-isoprene

Fig. 1. The geometry parameters of the trans/cis-isoprene and the isomerization transition state at the B3LYP/6-31+G** level

Fig. 2. Schematic reaction paths of isoprene with OH radical (a) trans-isoprene - OH adducts, (b) cis-isoprene - OH adducts
in Fig. 3(a) and (b), respectively. The thermochemistry constants of the stationary points and selected geometric parameters of stationary points are listed from Tables 1 and 2. The detailed discussion taking C1 position in t-isoprene for example is as following.
(1) Adding to C 1 carbon atom: When OH is added to the C 1 atom of t-isoprene, products $t-1 \mathrm{a}, t-1 \mathrm{~b}$ and $t-1 \mathrm{c}$ can be obtained whose energies are $-37.82,-36.52$ and $-36.26 \mathrm{kcal} /$
mol relative to that of $\mathrm{OH}+t$-isoprene, respectively. At 298.15 K , the equilibrium distribution is $0.62: 0.28: 0.10$. These three products can be converted into each other. After passing transition state t-TS1a, t-1 a can be changed into $t-1 \mathrm{~b}$ with the potential barrier $2.30 \mathrm{kcal} / \mathrm{mol} . t-1 \mathrm{~b}$ may be changed into $t-1 \mathrm{c}$ after going through the potential barrier $0.85 \mathrm{kcal} / \mathrm{mol}$, which corresponds to the transition state $t-\mathrm{TS} 1 \mathrm{c}$. If passing the transition state t-TS1b with the potential barrier $3.63 \mathrm{kcal} / \mathrm{mol}$,

TABLE-1
TOTAL ENERGIES (a.u.), ZPVE (a.u.), ENTHALPIES (a.u.), GIBBS FREE ENERGIES (a.u.), ENTROPY (cal/(mol .k)), HEAT CAPACITIES ($\mathrm{cal} /(\mathrm{mol} . \mathrm{k})$), PARTITION FUNCTION, ROTATIONAL CONSTANTS (GHZ) AND DIPOLE MOMENTS (Debye) OF STATIONARY POINTS ON THE REACTIONS OF OH ADDING TO C1 TO C4 POSITION

${ }^{\mathrm{a}}$ The data including ZPVE corrections; ${ }^{\mathrm{b}} \mathrm{A}$; B and C are rotational constants; ${ }^{\mathrm{c}} \mathrm{D}$ refers to dipole moments.
t-1a will be turned into t-1c. It is the stereochemistry of OH group that result in those three isomers. The position of OH group can be observed from the change of dihedral angle $\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{O}_{14} \mathrm{H}_{15}$. In the process t - $1 \mathrm{a} \rightarrow t$-TS1a $\rightarrow t$ - $1 \mathrm{~b} \rightarrow t$-TS1c $\rightarrow t$-1c, dihedral angle $\angle \mathrm{H}_{2} \mathrm{C}_{1} \mathrm{O}_{14} \mathrm{H}_{15}$ varies conforming to the sequence $63.47^{\circ} \rightarrow-9.6^{\circ} \rightarrow-69.6^{\circ} \rightarrow-116.8^{\circ} \rightarrow-169.9^{\circ}$ and at the transition state t-TS1b the number is 138.4°.

The adding reaction paths on other C atoms are similar to those on C 1 atom in t-isoprene.
(2) $\mathbf{O H}$ migration reaction of the $\mathbf{O H}-t$-isoprene adducts: Among the $\mathrm{OH}-t$-isoprene adducts, isomers result from different carbon atom can interconvert. For example, the isomers of C 1 position can convert to those of C 2 position and the isomers of C 3 position can convert to those of C 4 position. The transition states for OH migration have also been investigated which are identified at the B3LYP/6-31+G** level and the single point energy calculations for the transition states were performed at the $\mathrm{QCISD}(\mathrm{T}) / 6-31+\mathrm{G}^{* *}$ level. There are

TABLE-2
SELECTED GEOMETRIC PARAMETERS OF STATIONARY POINTS ON THE REACTION OF OH ADDING TO C1 TO C4 POSITION

C1-position							C2-position						
	t-P1a	t-P1b	t-P1c	t-TS1a	t-TS1b	t-TS1c		t-P2a	t-P2b	t-P2c	t-TS2a	t-TS2b	t-TS2c
$\mathrm{R}_{\mathrm{ClC} 4}$	1.5047	1.5014	1.5042	1.5034	1.5197	1.5018	$\mathrm{R}_{\mathrm{C4O14}}$	1.4676	1.4471	1.4456	1.4677	1.4495	1.4514
$\mathrm{R}_{\mathrm{ClO} 14}$	1.4386	1.4387	1.4406	1.4440	1.4247	1.4463	$\mathrm{R}_{\mathrm{ClC} 4}$	1.4979	1.5006	1.4969	1.4974	1.5011	1.5018
$\mathrm{R}_{\text {O14H15 }}$	0.9671	0.9659	0.9660	0.9636	0.9655	0.9657	$\mathrm{R}_{\text {O14H15 }}$	0.9681	0.9681	0.9678	0.9669	0.9646	0.9660
$\mathrm{R}_{\text {C4C5 }}$	1.4022	1.3987	1.4003	1.3984	1.4017	1.4025	$\mathrm{R}_{\mathrm{C4C5}}$	1.5176	1.5194	1.5244	1.5192	1.5236	1.5214
$\mathrm{R}_{\text {C5C7 }}$	1.3846	1.3853	1.3834	1.3858	1.3818	1.3818	$\mathrm{R}_{\mathrm{CSC} 7}$	1.3349	1.3372	1.3384	1.3358	1.3374	1.3375
$\mathrm{A}_{\text {O14C1C4 }}$	112.99	109.33	113.49	110.51	115.22	113.50	$\mathrm{A}_{\text {O14C4C5 }}$	108.23	104.43	108.13	106.54	105.91	109.28
$\mathrm{A}_{\text {O14CliH2 }}$	110.52	110.51	105.05	110.89	105.12	106.28	$\mathrm{A}_{\text {O14C4C1 }}$	108.54	109.77	106.01	109.64	107.87	109.12
$\mathrm{A}_{\text {CIC4C5 }}$	119.79	119.53	120.03	119.78	117.42	120.08	$\mathrm{A}_{\text {CIC4C5 }}$	109.97	106.81	107.14	108.59	107.16	107.06
$\mathrm{A}_{\text {C4CSC7 }}$	127.09	127.77	127.25	127.67	127.96	126.50	$\mathrm{A}_{\text {C4CSC7 }}$	127.44	127.03	127.35	127.28	127.40	127.39
$\mathrm{D}_{\mathrm{HISO14C1C4}}$	-59.07	168.84	69.04	-132.05	72.17	16.18	$\mathrm{D}_{\mathrm{HISOI4C4C1}}$	52.98	-51.29	170.46	11.27	-121.19	99.88
$\mathrm{D}_{\text {O14CIC4C5 }}$	119.94	124.02	112.87	126.30	174.19	103.86	$\mathrm{D}_{\text {O14C4CSC7 }}$	-118.34	-165.49	-131.55	-124.24	-140.24	-125.63
$\mathrm{D}_{\mathrm{CIC4CSC7}}$	177.49	176.78	179.01	176.55	177.16	178.84	$\mathrm{D}_{\mathrm{CIC4CSC7}}$	123.25	106.52	114.58	117.74	104.80	116.31
	c-P1a	c-P1b	c-P1c	c-TS1a	c-TS1b	c-TS1c		c-P2a	c-P2b	c-P2c	c-TS2a	c-TS2b	c-TS2c
$\mathrm{R}_{\mathrm{ClC} 4}$	1.5018	1.5055	1.5070	1.5046	1.5077	1.5049	$\mathrm{R}_{\mathrm{C4014}}$	1.4615	1.4502	1.4480	1.4704	1.4520	1.4648
$\mathrm{R}_{\mathrm{ClO} 14}$	1.4363	1.4411	1.4361	1.4421	1.4442	1.4401	$\mathrm{R}_{\mathrm{ClC} 4}$	1.4962	1.4969	1.4943	1.494	1.4958	1.4972
$\mathrm{R}_{\text {O14H15 }}$	0.9655	0.9669	0.9654	0.9633	0.9657	0.9634	$\mathrm{R}_{\text {O14H15 }}$	0.9680	0.9679	0.9671	0.9666	0.9660	0.9672
$\mathrm{R}_{\text {C4C5 }}$	1.3998	1.4014	1.3998	1.3994	1.4034	1.4002	$\mathrm{R}_{\text {C4C5 }}$	1.5178	1.5212	1.5274	1.5182	1.5257	1.5184
$\mathrm{R}_{\text {C5C7 }}$	1.3856	1.3861	1.3856	1.3863	1.3836	1.3857	$\mathrm{R}_{\mathrm{CSC7}}$	1.3340	1.3358	1.3343	1.3346	1.3349	1.3348
$\mathrm{A}_{\text {O14C1C4 }}$	109.08	112.37	113.79	110.44	113.66	111.79	$\mathrm{A}_{\text {O14C4C5 }}$	103.52	107.79	108.65	105.13	108.79	107.28
$\mathrm{A}_{\mathrm{OL4ClH2}}$	110.32	110.26	105.03	110.60	106.78	107.33	$\mathrm{A}_{\text {O14C4C1 }}$	108.76	109.89	105.63	109.27	106.70	105.58
$\mathrm{A}_{\text {CIC4CS }}$	122.44	122.69	122.76	122.71	121.19	122.59	$\mathrm{A}_{\text {CIC4C5 }}$	113.71	114.33	113.62	113.50	113.73	113.67
$\mathrm{A}_{\text {C4C5C7 }}$	128.55	128.24	128.35	128.50	126.70	128.47	$\mathrm{A}_{\text {C4CSC7 }}$	126.24	127.46	127.07	126.64	126.82	126.76
$\mathrm{D}_{\mathrm{HISO14C1C4}}$	172.72	-60.02	72.06	-129.69	5.11	112.63	$\mathrm{D}_{\mathrm{HISO14C4C1}}$	-55.76	63.26	171.98	-6.39	140.26	-139.45
$\mathrm{D}_{\text {O14ClC4cs }}$	136.03	110.19	128.55	133.63	71.37	131.29	$\mathrm{D}_{\text {O14C4C5C7 }}$	141.16	116.83	114.74	143.05	113.08	134.66
$\mathrm{D}_{\text {C1C4CSC7 }}$	-2.72	0.73	-2.81	-1.60	0.56	-2.49	$\mathrm{D}_{\mathrm{ClC4C5C7}}$	23.34	-5.66	-2.50	23.69	-5.68	18.34
C3-position							C4-position						
	t-P3a	t-P3b	t-P3c	t-TS3a	t-TS3b	t-TS3c		t-P4a	t-P4b	t-P4c	t-TS4a	t-TS4b	t-TS4c
$\mathrm{R}_{\text {C5O14 }}$	1.4368	1.4395	1.4457	1.4431	1.4355	1.4402	$\mathrm{R}_{\text {C7014 }}$	1.4382	1.4458	1.4326	1.4503	1.4424	1.4429
$\mathrm{R}_{\text {O14H15 }}$	0.9667	0.9670	0.9675	0.9634	0.9665	0.9646	$\mathrm{R}_{\mathrm{ClC} 4}$	1.3890	1.3858	1.3885	1.3876	1.3886	1.3887
$\mathrm{R}_{\mathrm{CIC} 4}$	1.3400	1.3396	1.3384	1.3390	1.3391	1.3388	$\mathrm{R}_{\text {O14H15 }}$	0.9671	0.9670	0.9656	0.9661	0.9640	0.9640
$\mathrm{R}_{\text {C4C5 }}$	1.5321	1.5266	1.5232	1.5300	1.5332	1.5291	$\mathrm{R}_{\text {C4C5 }}$	1.4022	1.4056	1.3999	1.4044	1.4012	1.4012
$\mathrm{R}_{\text {C5C7 }}$	1.4899	1.4945	1.4941	1.4947	1.4958	1.4956	$\mathrm{R}_{\mathrm{CSC7}}$	1.4949	1.4990	1.4926	1.4945	1.4944	1.4942
$\mathrm{A}_{\mathrm{Ol4C5C4}}$	107.34	107.34	111.91	108.91	111.73	112.50	$\mathrm{A}_{\text {O14C7C5 }}$	112.22	113.31	108.20	112.84	110.84	110.84
$\mathrm{A}_{\text {O14CSH6 }}$	109.68	109.68	103.35	109.87	104.57	105.41	$\mathrm{A}_{\text {O14С748 }}$	110.45	104.08	110.69	107.03	109.51	107.60
$\mathrm{A}_{\text {cicacs }}$	119.93	119.93	120.28	120.29	120.17	120.28	$\mathrm{A}_{\text {CIC4C5 }}$	120.15	120.35	120.48	120.15	120.21	120.18
$\mathrm{A}_{\text {C4CSC7 }}$	111.60	111.60	113.05	112.17	111.37	112.63	$\mathrm{A}_{\text {C4CSC7 }}$	126.77	124.62	125.80	125.63	126.53	126.55
$\mathrm{D}_{\mathrm{HI} 5014 \mathrm{CSC4}}$	57.14	-171.07	-84.98	124.00	-79.80	-18.41	$\mathrm{D}_{\mathrm{HISOO}}^{14 \mathrm{ClCs}}$	-53.16	52.87	170.63	2.38	-114.01	114.04
$\mathrm{D}_{\mathrm{OL} 4 \mathrm{CSC4Cl}}$	-118.97	-130.00	-123.93	-128.48	-124.99	-116.09	$\mathrm{D}_{\text {O14C7CSC4 }}$	130.57	72.41	152.41	96.26	62.00	126.76
$\mathrm{D}_{\text {CIC4CSC7 }}$	120.51	107.76	110.14	109.98	108.51	118.64	$\mathrm{D}_{\text {CIC4CSC7 }}$	179.70	-177.70	177.65	-177.91	-129.55	179.61
	c-P3a	c-P3b	c-P3c	c-TS3a	c-TS3b	c-TS3c		c-P4a	c-P4b	c-P4c	c-TS4a	c-TS4b	c-TS4c
$\mathrm{R}_{\text {CSO14 }}$	1.4608	1.4469	1.4449	1.4645	1.4433	1.4433	$\mathrm{R}_{\text {C7014 }}$	1.4414	1.4376	1.4300	1.4478	1.4331	1.4331
$\mathrm{R}_{\text {O14H15 }}$	0.9687	0.9668	0.9658	0.9665	0.9653	0.9653	$\mathrm{R}_{\mathrm{CIC} 4}$	1.3844	1.3894	1.3847	1.3855	1.3844	1.3845
$\mathrm{R}_{\mathrm{CIC} 4}$	1.3400	1.3383	1.3381	1.3392	1.3386	1.3386	$\mathrm{R}_{\text {O14H15 }}$	0.9668	0.9670	0.9650	0.9658	0.9631	0.9631
$\mathrm{R}_{\text {C4Cs }}$	1.5235	1.5282	1.5281	1.5239	1.5945	1.5945	$\mathrm{R}_{\text {C4C5 }}$	1.4066	1.4024	1.4027	1.4068	1.4040	1.4037
$\mathrm{R}_{\text {C5C7 }}$	1.4899	1.4904	1.4901	1.4890	1.4875	1.4875	$\mathrm{R}_{\mathrm{CSC} 7}$	1.5023	1.4961	1.4954	1.4978	1.4992	1.4993
$\mathrm{A}_{\text {O14C5C4 }}$	110.28	106.12	106.02	108.20	111.08	111.08	$\mathrm{A}_{\text {O14C7C5 }}$	114.32	112.00	107.88	113.36	110.49	110.48
$\mathrm{A}_{\text {O14С5Н6 }}$	102.32	108.44	108.24	105.44	107.56	107.56	$\mathrm{A}_{\text {О14С7Н8 }}$	109.90	104.30	110.43	107.56	107.91	110.69
$\mathrm{A}_{\text {CIC4C5 }}$	122.91	122.24	122.14	122.54	122.21	122.21	$\mathrm{A}_{\text {CIC4C5 }}$	122.45	123.97	122.62	122.85	122.59	122.58
$\mathrm{A}_{\text {C4CSC7 }}$	116.65	116.21	116.11	115.87	115.67	115.67	$\mathrm{A}_{\text {C4CSC7 }}$	125.11	127.21	125.09	125.25	125.16	125.10
$\mathrm{D}_{\mathrm{HI} 5014 C 5 C 4}$	71.80	-178.86	-53.16	127.90	-115.91	-115.91	$\mathrm{D}_{\text {H15014C7C5 }}$	-48.61	55.53	-129.08	-3.37	119.75	-120.02
$\mathrm{D}_{\mathrm{OL4C5C4Cl}}$	-131.09	-129.45	-129.35	-137.11	-101.40	-101.40	$\mathrm{D}_{\text {O14C7CSC4 }}$	-65.06	-128.04	-176.1	-84.18	174.10	-176.23
$\mathrm{D}_{\text {CIC4CSC7 }}$	-5.80	-6.07	-6.007	-13.05	21.84	21.84	$\mathrm{D}_{\text {C1C4Csc7 }}$	1.51	0.56	0.63	0.34	0.22	-0.70

Fig. 3. Schematic potential energy surfaces of transformation reaction among the adducts at the QCISD(T)\|B3LYP/6-31+G** level (a) trans-isoprene -OH adducts, (b) cis-isoprene - OH adducts

Fig. 4. Schematic potential energy surfaces for OH migration reactions at the $\mathrm{QCISD}(\mathrm{T}) \| \mathrm{B} 3 \mathrm{LYP} / 6-31+\mathrm{G}^{* *}$ level (a) trans-isoprene -OH adducts, (b) cis-isoprene -OH adducts
four transition states. The schematic potential energy surfaces for OH migration of the t-isoprene- OH adducts are drawn in Fig. 4(a). The geometry parameters of the OH migration transition states are shown in Fig. 5(a). The transition state which associates with the interconversion of isomers t-1a and t-2a labeled t-TS12 is located $37.17 \mathrm{kcal} / \mathrm{mol}$ above isomer $t-1 \mathrm{a}$. The transition state between isomers $t-1 \mathrm{c}$ and $t-2 \mathrm{~b}$ labeled t-TS12a is located $36.02 \mathrm{kcal} / \mathrm{mol}$ above isomer $t-1 \mathrm{c}$. The transition state t-TS34 associated with isomers $t-4 \mathrm{a}$ and t-3a is located $35.7 \mathrm{kcal} / \mathrm{mol}$ above isomer $t-4 \mathrm{a}$. The transition state t-TS34a between isomers $t-4 \mathrm{~b}$ and t-3b is located $35.97 \mathrm{kcal} /$ mol above isomer $t-4 \mathrm{~b}$. It is obvious that each OH migration reaction has a comparable high barrier. However the abundant energy adducts can be obtained directly for the reaction of OH - t-isoprene proceeds without a barrier. Compared to the energy of OH and t-isoprene, the transition state t-TS12 and t-TS12a are located -0.65 and $-0.24 \mathrm{Kcal} / \mathrm{mol}$, respectively, while the energies of transition states t-TS34 and t-TS34a are
higher 0.13 and $0.50 \mathrm{Kcal} / \mathrm{mol}$ than that of -OH and t-isoprene. It can be seen that the - OH migration reaction is easy to occur.

The paths of adding reaction and migration reaction in c-isoprene are similar to those in t-isoprene which are shown in Fig. 3(b) and 4(b), respectively. The geometry parameters of the OH migration transition states are shown in Fig. 5(b). As illustrated in Fig. 3, $c-1 \mathrm{~b}, c-2 \mathrm{~b}, c-3 \mathrm{~b}, c-4 \mathrm{~b}, t-1 \mathrm{a}, t-2 \mathrm{~b}, t-3 \mathrm{~b}$ and $t-4 \mathrm{a}$ are the compounds with the lowest energy on each adding position, i.e., they are the most stable structures on each position. Especially, the energies of $c-1 \mathrm{~b}$ and $c-4 \mathrm{~b}$ are lower than those of $c-2 \mathrm{~b}$ and $c-3 \mathrm{~b}$ and the energies of $t-1 \mathrm{a}$ and $t-4 \mathrm{a}$ are lower than those of $t-2 \mathrm{~b}$ and $t-3 \mathrm{~b}$. Obviously, the terminal isomers are considerably more stable than the others since addition at the corresponding carbons allows the radical center to be delocalized. For the subsequent step, only the most stable structure on each step whose main geometry parameters are drawn in Fig. 6 is reported though all the isomers are calculated. The completed potential energy surfaces to form the polyols are drawn in Fig. 7.
Fig. 5. The geometry parameters of OH migration transition states at the B3LYP/6-31+G** level (a) trans-isoprene -OH adducts, (b) cis-isoprene -OH adducts

Fig. 6. The geometry parameters of stationary points of the multi-step addition reaction at the B3LYP/6-31+G** level (a) The system of trans-isoprene with OH, (b) The system of cis-isoprene with OH

Fig. 7. Schematic potential energy surfaces of multi-step addition reaction at the B3LYP/6-311++G(3df,2pd)\|6-31+G** level (a) The system of trans-isoprene with OH , (b) The system of cis-isoprene with OH

Methylbutenediol: When OH radical continues to react with those adducts of isoprene- OH , the adding position of the second OH group is affected by the first OH group. Concretely speaking, since a $p-\pi$ conjugate system is formed between the free electron and the $\mathrm{C}=\mathrm{C}$ double bond in the adduct $t / c-1$, the second OH group can be added to C 2 position or C 4 position which induces to two products, $t / c-1,2$ and $t / c-1,4$. Similarly, $t / c-1,4$ and $t / c-3,4$ can be obtained from the addition of $t / c-4$ with OH group. As for $t / c-2$ and $t / c-3$, OH group can only be added to C 1 and C 4 position and $t / c-1,2$ and $t / c-3,4$ is formed, respectively. The $t / c-1,2$ are more stable than $t / c-1,4$ and t / c 3,4 and the geometry parameters of those methylbutenediols are listed in Fig. 6.

Methylbutanetriol radicals: The subsequent additions of OH group to these methylbutenediol lead to the formation of eight methylbutanetriol radicals, $t / c-1,2,3$ and $t / c-1,2,4$ originating from the addition of OH to $t / c-1,2$ and $t / c-1,3,4$ and t / c $2,3,4$ that are obtained after addition of OH to $t / c-3,4$. And that $t / c-1,2,4$ and $t / c-1,3,4$ can also be obtained from the addition of OH to $t / c-1,4$. Among the polyols obtained from the addition of t-isomers with $\mathrm{OH}, t-1,2,3$ is more stable than the others. While $c-1,2,3$ is more stable than other polyols obtained from the addition of c-isomers with OH . What's more, $t-1,2,3$ is the most stable isomer among the eight butanetriol radicals. The geometry parameters of those methylbutanetriol radicals, $t / c-1,2,3$, are listed in Fig. 6.

Methylbutanetetraols: In the last step, the additions of OH group to these methylbutanetriol radicals lead to the formation of methylbutanetetraols, which are labeled as t / c 1,2,3,4 (Fig. 2). The $t-1,2,3,4$ has the lowest energy among all the isomers. Those polyols have low vapour pressure and strong polarity allowing them to condense onto preexisting particles and hydrate in aqueous phase. The geometry parameters of $\mathrm{t} t / c-1,2,3,4$ are listed in Fig. 6.

Equilibrium distributions: The equilibrium distributions of all the available minima are calculated according to eqn. 1. For those t-methylbuteneol radicals, the equilibrium distributions of the available minima obtained from the same adding position from C 1 to C 4 is $0.62: 0.28: 0.10,0.20: 0.41: 0.39$, 0.58:0.22:0.20 and 0.52:0.23:0.25. As for c-methylbuteneol radicals, the ratios are $0.19: 0.65: 0.16,0.36: 0.56: 0.08$,
0.09:0.57:0.34 and 0.62:0.28:0.10. The isomers with the lowest energy at the same adding position almost take the most proportion, so the isomers with the lowest energy at the same adding position are reported only in the subsequent reaction. The ratios of methylbuteneol radicals $t-1: t-2: t-3: t-4$ and $c-1: c-$ 2:c-3:c-4 are 0.99:0.0: 0.0:0.01 and 0.81:0.0:0.0:0.19, respectively. As for methylbutenediol, the equilibrium distributions of $t-1,2: t-1,4: t-3,4$ and $c-1,2: c-1,4: c-3,4$ are 0.31:0.01: 0.68 and 0.88:0.02:0.10. In the subsequent reaction, the ratios of methylbutanetriol radicals $t-1,2,3: t-1,2,4: t-1,3,4: t-2,3,4$ and $c-1,2,3: c-1,2,4: c-1,3,4: c-2,3,4$ are 0.61:0.04:0.27:0.08 and 0.06:0.04:0.82:0.08.

Equilibrium constants: Tang et al. ${ }^{37}$ in their report about SOA using quantum mechanics method, it has been pointed that the predictive power of quantum mechanics methods can be of great use for species that not been studied experimentally which can make up the scarcity of the experimental data and the estimated methods.

A summary of the reaction pathway for the polyol heterogeneous reactions is given in Fig. 8. The whole process suggested that path $t-1, t-1,2, t-1,2,3$, to $t-1,2,3,4$ is more favourable than other paths. Zero point energy ($\mathrm{E}_{\text {zpe }}$), total energies ($\mathrm{E}_{\text {total }}$), enthalpies (H), Gibbs free energies of formation (G), entropy (S) of stationary points are calculated using quantum mechanics method (Table-3). Enthalpies of reaction ($\Delta \mathrm{H}_{\mathrm{r}}{ }^{0}$ (gas)), Gibbs free energies of reaction in gas and hydration reaction in aqueous phases ($\Delta \mathrm{G}_{\mathrm{r}}{ }^{0}$ (gas) and $\Delta \mathrm{G}_{\mathrm{r}}{ }^{0}(\mathrm{aq})$) are calculated and shown in Table-4. Hydration are more favourable for methylbuteneol radicals, methylbutenediol, methylbutane-tetraol than for methylbutanetriols radicals, shown by the calculated $\Delta \mathrm{H}_{\mathrm{r}}{ }^{0}$ and $\Delta \mathrm{G}_{\mathrm{r}}{ }^{0}$. Equilibrium constants in the gas-phase [reported as

TABLE-3 TOTAL ENERGIES (a.u.), ZPVE (a.u.), ENTHALPIES (a.u.), GIBBS FREE ENERGIES (a.u.), ENTROPY (cal/(mol .k)) OF STATIONARY POINTS ON THE REACTIONS OF OH ADDING TO ISOPRENE					
	$\mathrm{E}_{\text {2pe }}$	$\mathrm{E}_{\text {total }}$	H	G	S
OH	0.00844	-75.73058	-75.72727	-75.74751	42.60
trans-Isoprene	0.11342	-195.21839	-195.21159	-195.24687	74.26
trans-1	0.12794	-271.00830	-270.99968	-271.04063	86.19
trans-1,2	0.14623	-346.85431	-346.84508	-346.88625	86.64
trans-1,2,3	0.16020	-422.62925	-422.61844	-422.66350	94.82
trans-1,2,3,4	0.18027	-498.49971	-498.48818	-498.53485	98.21
cis-Isoprene	0.11293	-195.21936	-195.20697	-195.24404	-75.482
cis-1	0.12795	-271.00689	-270.99828	-271.03920	86.11
cis-1,2	0.14604	-346.85283	-346.84342	-346.88506	87.62
cis-1,2,3	0.15944	-422.62760	-422.61647	-422.66222	96.30
cis-1,2,3,4	0.17960	-498.49598	-498.48411	-498.53143	99.60

TABLE-4
ENTHALPIES, FREE ENERGIES AND EQUILIBRIUM CONSTANTS (REPORTED AS $\log \mathrm{K}$) OF REACTIONS IN THE GAS-HASE AND AQUEOUS-PHASE AT THE STANDARD STATE

	Gas-phase			Aqueous-phase	
	$\Delta \mathrm{H}_{\mathrm{r}}$	$\Delta \mathrm{G}_{\mathrm{r}}$	$\log \mathrm{K}$	$\Delta \mathrm{G}_{\mathrm{r}}$	$\log \mathrm{K}$
(1)	-38.23	-29.02	1.69	-29.71	1.70
(2)	-74.13	-61.56	2.02	-58.44	1.99
(3)	-28.92	-18.66	1.50	-17.08	1.46
(4)	-89.40	-77.71	2.11	-75.63	2.11
(5)	-40.19	-30.65	1.71	-30.95	1.72
(6)	-73.96	-61.71	2.01	-60.13	2.00
(7)	-28.73	-18.61	1.49	-17.05	1.46
(8)	-88.08	-76.37	2.11	-75.21	2.11

Fig. 8. Pathways for multi-step adding reaction and solvation energies of stationary points were shown. All values are in $\mathrm{Kcal} / \mathrm{mol}$ (a) The system of trans-isoprene with OH , (b) The system of cis-isoprene with OH
$\log K$ (gas)] and in aqueous solution $[\log K(a q)]$ are calculated and shown in Table-4. The quantum calculated $\log \mathrm{K}$ (gas) values follow the same trend as the estimated $\log \mathrm{K}(\mathrm{aq})$ for hydration reaction. Results show that the hydration reactions for methylbuteneol radicals, methyl-butenediols, methylbutanetriol radicals and methylbutanetetraols are all thermodynamic favourable.

Conclusion

In this paper, a theoretical study on the important atmospheric reaction of isoprene with OH radical is presented. The comprehensive mechanism study is performed at the QCISD(T)\|B3LYP/6-31+G** and B31YP/6-311++G (3df,2pd)||6-31+G** level including the isomerization of t / c isoprene, the OH -initiated oxidation reactions of isoprene, OH migration reactions of the isomers of the isoprene- OH adducts and the main adducts in the subsequent reaction, such as, methylbuteneol radicals, methylbutenediols, methylbutanetriol radicals and methylbutanetetraols.

Since the potential barrier of the isomerization of t / c isoprene is not high and c-isoprene is stable, the isomer of c-isoprene should be taken into account when OH -initiated oxidation reactions of isoprene are researched. It is helpful to interpret the formation of 3-methylfuran in the subsequent reactions.

The OH -initiated adducts at the terminal carbons of t / c isoprene allows the radical center to be delocalized, which interpret the stability of the corresponding isomers. The stable sequence should be $t-1, c-1, t-4, c-4$ according to the thermochemistry stability. Compared to energy of $\mathrm{OH}-c$-isoprene, the energies of add adducts, even the migration transition states TS12 and TS12a are lower and other migration transition states have a low potential barrier. Then the addition reaction and OH migration reaction occur easily, i.e., all adducts should be obtained in the first step. As for the subsequent addition reaction, a number of isomers exit for the stereochemistry of OH group. And each step is thermodynamic favourable till the formation of methylbutanetetraols. Other mechanisms and kinetic study will be performed later.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China (No. 20903062, No. 20873074 and No. 20737001), Natural Science Foundation of Shandong Province (No. Q2008B07), Independent Innovation Foundation of Shandong University (No. 2010TS064) and Open Project from State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. KF2009-10).

REFERENCES

1. R. Atkinson, J. Phys. Chem. Ref. Data, 2, 1 (1994).
2. J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley \& Sons: New York (1997).
3. F. Arnold, G. Knop and H. Zeiereis, Nature, 321, 505 (1986).
4. R.A. Cox, R.G. Derwent and M.R. Williams, Environ. Sci. Technol., 14, 57.
5. T.E. Kleindlenst, G.W. Harris and J.N. Pitts Jr., Environ. Sci. Technol., 16, 844 (1982).
6. R. Atkinson, S.M. Aschmann, A.M. Winer and J.N. Pitts Jr., Int. J. Chem. Kinet., 14, 507 (1982).
7. T. Ohta, J. Phys. Chem., 87, 1209 (1983).
8. P. Campuzano-Just, M.B. Williams and L. D'Ottone, J. Hynes, Geophys. Res. Lett., 27, 693 (2000).
9. P. Stevens, D. L'Esperance, B. Chuong and G. Martin, Int. J. Chem. Kinet., 31, 637 (1999).
10. B. Chuong and P. Stevens, J. Phys. Chem., 104, 5230 (2000).
11. W.S. McGivern, I. Suh, A.D. Clinkenbeard, R. Zhang and S.W. North, J. Phys. Chem., 104, 6609 (2000).
12. A.C. Lloyd, R. Atkinson, F.W. Lurmann and B. Nitta, Atmos. Environ., 17, 1931 (1983).
13. J.P. Killus and G.Z. Whitten, Environ. Sci. Technol., 18, 142 (1984).
14. R. Atkinson, S.M. Aschmann, E.C. Touazon, J. Arey and B. Zielinska, Int. J. Chem. Kinet., 21, 593 (1989).
15. C.I. Gu, C.M. Rynard, D.G. Hendry and T. Mill, Environ. Sci. Technol., 19, 151 (1985).
16. E.C. Tuazon and R. Atkinson, Int. J. Chem. Kinet., 22, 1221(1990).
17. S.E. Paulson and J.H. Seinfeld, Int. J. Chem. Kinet., 24, 79 (1992).
18. D. Grosjean, Environ. Sci. Technol., 27, 830 (1993).
19. E.S. Kwok, R. Atkinson and J. Arey, Environ. Sci. Technol., 29, 2467 (1995).
20. W.F. Lei, R.Y. Zhang, W.S. McGivern, A.D. Kovacs and S.W. North, Chem. Phys. Lett., 326, 109 (2000).
21. W.F. Lei, A.D. Kovacs and R.Y. Zhang, J. Chem. Phys., 113, 5354 (2000).
22. W.S. McGivern, I. Suh, A.D. Kovacs, R.Y. Zhang and S.W. North, J. Phys. Chem. A, 104, 6609 (2000).
23. W.F. Lei, R.Y. Zhang, W.S. McGivern, A.D. Kovacs and S.W. North, J. Phys. Chem. A, 105, 471 (2001).
24. D. Zhang and R.Y. Zhang, J. Am. Chem. Soc., 124, 2692 (2002).
25. D. Zhang, R.Y. Zhang, J. Park and S.W. North, J. Am. Chem. Soc., 124, 9600 (2002).
26. J. Zhao, R.Y. Zhang, E.C. Fortner and S.W. North, J. Am. Chem. Soc., 126, 2686 (2004).
27. D. Zhang, R.Y. Zhang and S.W. North, J. Phys. Chem. A, 107, 11013 (2003).
28. J. Park, C.G. Jongsma, R.Y. Zhang and S.W. North, J. Phys. Chem. A, 108, 10688 (2004).
29. M.F. Marquez, I.R. Idaboy, A. Galano and A.V. Bunge, Environ. Sci. Technol., 39, 8797 (2005).
30. M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M.O. Andreae, P. Artaxo and W. Maenhaut, Science, 303, 1173 (2004).
31. N.S. Handy, J.T. Hynes, L. Bogdan, in eds.: D.J. Bicout and M.J. Field, Quantum Mechanical Simulation Methods for Studying Biological Systems, Les Houches Workshop, pp. 1-27 (1995).
32. W.L. Zhu, H.L. Jiang, K.X. Chen, R.Y. Ji and Y. Cang, Prog. Chem., 11, 247 (1999).
33. W.L. Zhu, H.L. Jiang, J.Z. Chen, J.D. Gu, K.X. Chen, Y. Cang and R.Y. Ji, Sci. Chin. (Ser. B), 41, 616 (1998).
34. J.D. Gu, H.L. Jiang, W.L. Zhu, J.Z. Chen, K.X. Chen and R.Y. Ji, J. Mol. Struct. (Theochem.), 459, 103 (1999).
35. R.Q. Zhang, Y.X. Bu, S.T. Li, J.H. Huang, K.L. Han and G.Z. He, Sci. Chin. (Ser. B-Chem.), 30, 419 (2000).
36. M.J. Frisch, G.W. Trucks, C. Gonzalez and J.A. Pople, Gaussian, Revision B.03; Pittsburgh PA (2003).
37. C.H. Tong, M. Blanco, W.A. Goddard III and J.H. Seinfeld, Environ. Sci. Technol., 40, 2333 (2006).
38. V. Barone, M. Cossi and J. Tomasi, J. Comp. Chem., 19, 404 (1998).
39. V. Barone and M. Cossi, J. Phys. Chem. A, 102, 1995 (1998).
