

Experimental and Predicted Viscosities of Binary Mixtures of Styrene with o-, m- or p-Xylene and Toluene at Different Temperatures

FIRDOSA NABI^{1,*}, MAQSOOD AHMAD MALIK² and CHRISTOPHER G. JESUDASON¹

¹Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia ²Department of Chemical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

*Corresponding author: Tel: +6 0105444912; E-mail: firdosachem@gmail.com

(Received: 14 September 2010;

Accepted: 11 May 2011)

AJC-9929

The viscosities (η) of pure styrene, toluene, *o*-xylene, *m*-xylene or *p*-xylene and those of their binary mixtures with styrene as common component, covering the whole composition range at the temperatures 298.15, 303.15, 308.15 and 313.15 K have been measured. From the experimental data the deviations in viscosity ($\Delta\eta$), deviations in Gibbs free energy of activation (ΔG), deviations in entropies, (ΔS^*) and deviations in enthalpies (ΔH^*) of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Further, the excess molar volumes, V^E, were calculated using the viscosity data for the binary mixtures. Moreover, theoretical values of viscosities of the binary mixtures were calculated using different empirical relations and theories.

Key Words: Viscosities, Deviation functions, Theoretical predictions, Binary mixtures.

INTRODUCTION

Thermodynamic and physical properties data have a well recognized importance in design calculations involving separations, fluid flow and heat transfer. The viscosity data presents a valuable insight into the structure and interactions in mixed solvents^{1,2}. These considerations led us to undertake the present study in continuation to our research programme on the thermodynamic behaviour of binary liquid mixtures³⁻⁵. The mixing of different components gives rise to solutions that generally do not behave ideally. The deviation from ideality is expressed by many thermodynamic variables particularly by excess and deviation properties. The concentration and temperature dependence of these properties are required for the use in technological, biological and industrial applications as they provide wide choice of solvents with desired compositions and properties⁶⁻⁸. Here, we extend our study to the binary mixtures of styrene with o-, m- or p-xylene and toluene. These mixtures are interesting from the experimental as well as theoretical point of view because styrene is mixed with components having the similar functional groups (CH₃) but at different locations on the benzene ring. Styrene is a rigid plate like molecule with oriented structure, whereas o-, m- or p-xylene has a large quadrupole moment⁹ that leads to the molecular order in the pure state. It would be interesting to examine the mixing of styrene with o-, m- or p-xylene and toluene in order to observe

the effect of different location of methyl groups (CH₃) on the molecular interaction in these binary mixtures. A complete knowledge of thermodynamic and transport properties of these industrially important mixture are especially important because they are widely used as solvents for dyes, colouring raw materials in plastic industry used to make synthetic fibers and for air crafts and vehicles and large scale preparation of various polymers^{10,11}.

The experimental data have been used to evaluate the deviations in viscosity ($\Delta\eta$), deviations in Gibbs free energy of activation (Δ G), deviations in entropies (Δ S*) and deviations in enthalpies (Δ H*) of activation of viscous flow. An attempt has also been made to calculate excess molar volumes, V^E, using $\Delta\eta$ data. Moreover, viscosities of the binary mixtures were calculated theoretically from the pure component data by using various empirical and semi-empirical relations and the results were compared with the experimental findings. Such studies offer a convenient, model free approach, for the study of the thermodynamic properties of the liquid mixtures¹².

EXPERIMENTAL

All the chemicals used for the present study were obtained from S.D. Fine-Chem Ltd., India, with purity greater than 99 %. The water content from the pure components, if any, was removed by storing them over 0.4 nm molecular sieves. The binary mixtures were prepared by mass at room temperature and kept in special air tight bottles. The weighings were done on a Precisa XB-120 (Swiss make) electronic balance with precision of ± 0.1 mg.

The viscosities of pure liquids and their binary mixtures were measured by using Ubbelhode type suspended level viscometer. The precision in viscosity measurement was within $\pm 1 \times 10^{-6}$ mPa.s. The temperature of the test liquids was maintained to an accuracy of ± 0.02 K using JULABO (Germany, Model: MD) in an electronically controlled thermostatic water bath. The uncertainties in the measured viscosities were not more than $\pm 2 \times 10^{-3}$ mPa.s. The observed viscosities of pure styrene, *o*-, *m*-, *p*-xylene at 298.15 K are 0.695, 0.755, 0.581, 0.611 and toluene at 303.15 K 0.554 mPa.s, respectively, which compare well with the literature values 0.695⁴, 0.754¹³, 0.581¹⁴, 0.603¹³ and 0.527¹⁵ mPa.s, respectively.

RESULTS AND DISCUSSION

The experimental values of η for the mixtures of styrene with o-, m- or p-xylene and toluene including those of their pure liquids, were measured over the entire composition range at 298.15, 303.15, 308.15 and 313.15 K are presented in Table-1. The density data in the present work were taken from earlier work^{16,17}. Using the experimental values of viscosity together with the values of density, the derived properties such as deviations in viscosity ($\Delta \eta$), deviations in Gibbs free energy of activation (ΔG), deviations in entropies (ΔS^*) and deviations in enthalpies (ΔH^*), of activation of viscous flow were calculated. These properties correspond to the difference between the actual property and the property if the system behaves ideally and, thus, are useful in the study of molecular interactions and new arrangements after mixing. The values of deviation functions $\Delta \eta$ and ΔG , were calculated by using the following standard relations:

$$\Delta \eta = \eta - (x_1 \eta_1 + x_2 \eta_2) \tag{1}$$

$$\Delta G = G - (x_1 G_1 + x_2 G_2)$$
 (2)

The sign and magnitude of these deviations depend on the strength of interaction between the unlike molecules in the mixtures. The values of $\Delta\eta$ and ΔG and for each mixture and at each investigated temperature were fitted to Redlick and Kister¹⁸ polynomial equation:

$$\Delta Y = x_1 x_2 \sum_{i=1}^{4} A_i (1 - 2x_1)^{i-1}$$
(3)

where ΔY stands for $\Delta \eta$ or ΔG . The coefficients A_i of the fitting eqn. 3, evaluated using least-squares method and the standard deviations σ (ΔY), calculated as:

$$\sigma(\Delta Y) = \left(\sum \left[(Y_{expt} - Y_{cal})^2 \right] / (m-k) \right)^{\frac{1}{2}}$$
(4)

where m is the number of experimental data points and k is the number of A_i coefficients considered, have been listed in Table-2. The variations of $\Delta\eta$ or ΔG with mole fraction, x₁ of styrene are graphically shown in Figs. 1 and 2 at 298.15 K only, to avoid over crowding of data points at remaining temperatures.

From Fig. 1, it is clear that $\Delta \eta$ shows positive deviations for the mixtures of styrene with toluene and *m*-xylene, turn negative for *o*-xylene, become more so for *p*-xylene and follow the sequence: toluene < *m*-xylene < *o*-xylene < *p*-xylene. An explanation for the behaviour of negative $\Delta \eta$ values may be observed due to the difference in the molecular size of the component molecule¹⁹. $\Delta \eta$ are considering order in the pure liquids and in the solution and also by considering the interactions between the component molecules in the mixtures. The observed small positive $\Delta \eta$ values for styrene + toluene and *m*-xylene mixtures suggest that destruction in order takes place. On the other hand, negative $\Delta \eta$ values for styrene + *o*-xylene or *m*-xylene indicate that accommodation of the component molecules into each other's structure and because of the dispersion or weak dipole-dipole forces which are primarily responsible for the interaction between component molecules. This sequence is same as in the molar volume of styrene with *o*-, *m*- and *p*-xylenes¹⁶.

The variations of ΔG with mole fraction x_1 of styrene for all the binary mixtures are presented in Fig. 2. The values of ΔG for the system styrene + toluene and *m*-xylene are entirely positive and turn negative for styrene + *o*-xylene and *p*-xylene. In general, the positive contribution to ΔG values may be attributed to the presence of specific interactions whereas negative contribution may be ascribed to the dispersion forces^{20,21}. Thus, the observed positive ΔG values for the mixtures of styrene + toluene and *m*-xylene suggest that the specific interactions of the donor-acceptor type are prevailing in the system, whereas negative ΔG values for the other indicates the dominance of dispersion forces between the component molecules.

Further, by using the temperature dependence of viscosity data the activation parameters for viscous flow have been investigated. The Eyring's viscosity equation^{22,23} is given as:

$$\eta = \left(\frac{\mathbf{h} \cdot \mathbf{N}}{\mathbf{V}}\right) \exp\left(\frac{\Delta \mathbf{G}^*}{\mathbf{R} \cdot \mathbf{T}}\right)$$
(5)

where h is Planck's constant, N is Avogadro's number and ΔG^* is the Gibbs energy of activation of viscous flow. Combining eqn. 5 with $\Delta G^* = \Delta H^*-T\Delta S^*$ gives the equation:

$$\mathbf{R} \cdot \ln\left(\frac{\eta \cdot \mathbf{V}}{\mathbf{h} \cdot \mathbf{N}}\right) = \left(\frac{\Delta \mathbf{H}^*}{\mathbf{T}}\right) - \Delta \mathbf{S}^* \tag{6}$$

where ΔH^* and ΔS^* are the enthalpy and entropy of activation of viscous flow, respectively. The plots of the left hand side of

eqn. 6, *i.e.*,
$$\mathbf{R} \cdot \ln \left(\frac{\eta \cdot \mathbf{V}}{\mathbf{h} \cdot \mathbf{N}} \right)$$
 against $\frac{1}{\mathbf{T}}$ for all the binary mixtures

at different compositions were found to show linear trend for each composition of the system under study. This indicates that ΔH^* values are almost constant in the investigated temperature range, *i.e.*, ΔH^* is independent of temperature. Thus, the values of ΔH^* and ΔS^* were obtained as the slopes and intercepts of the above plots by using a linear regression procedure.

The values of Δ H* and Δ S* along with the linear correlation factor, r of eqn. 6 are given in Table-3. A close perusal of Table-3 indicates that for all the binary mixtures the values of Δ H* are positive and an opposite negative trend in Δ S* values with mole fraction x₁ of styrene were observed. It has been suggested²⁴ that the enthalpy of activation of viscous flow may be regarded as a measure of the degree of cooperation between

TABLE-1 THEORETICALLY EVALUATED VISCOSITIES BY USING VARIOUS CO-RELATIONS ALONG WITH EXPERIMENTAL VALUES AND AVERAGE DEVIATIONS FOR THE BINARY MIXTURES AT DIFFERENT TEMPERATURES

	Average deviations $(\eta_{expt}, \eta_{theo})$			Average deviations $(\eta_{expt}-\eta_{th})$				(theo)			
x ₁	η (mPa s)	Wilke	Wvis/RT	Hind	Grunberg- Nissan	x ₁	η (mPa s)	Wilke	Wvis/RT	Hind	Grunberg- Nissan
	Styrene +										
		Temperatur	re = 298.15 H	K			Temperature = 303.15 K				
0.1077	0.7430	0.7484	0.7436	0.7438	0.7347	0.1077	0.6736	0.6774	0.7048	0.7070	0.6737
	0 = 0 0 4	(-0.0054)	(-0.0006)	(-0.0008)	(-0.0006)			(-0.0038)	(-0.0312)	(-0.0334)	(-0.0001)
0.2009	0.7336	0.7426	0.7347	0.7349	0.7254	0.2009	0.6675	0.6749	0.7212	0.7243	0.6687
0.2110	0 7245	(-0.0090)	(-0.0011)	(-0.0013)	(-0.0011)	0.2110	0 6625	(-0.00/4)	(-0.0537)	(-0.0568)	(-0.0012)
0.5110	0.7243	(0.7559)	(0.7234)	(0.7230)	(0.7183)	0.5110	0.0023	(0.0719)	(0.7342)	(0.7579)	(0.0038)
0.4090	0 7178	0 7200	0.7182	0.7183	0.7125	0.4090	0.6591	0.6693	0 7307	(-0.0734) 0.7437	0.6602
0.4090	0.7170	(-0.0121)	(-0.0005)	(-0.0005)	(-0.0005)	0.4090	0.0591	(-0.0102)	(-0.0806)	(-0.0846)	(-0.0011)
0.4991	0.7125	0.7245	0.7125	0.7125	0.7067	0.4991	0.6568	0.6670	0.7392	0.7439	0.6575
		(-0.0120)	(0.0000)	(0.0000)	(0.0000)			(-0.0102)	(-0.0829)	(-0.0871)	(-0.0007)
0.6071	0.7069	0.7181	0.7067	0.7066	0.7025	0.6071	0.6552	0.6642	0.7331	0.7376	0.6552
		(-0.0112)	(0.0002)	(0.0003)	(0.0002)			(-0.0090)	(-0.0779)	(-0.0824)	(0.0000)
0.7060	0.7029	0.7122	0.7024	0.7022	0.6992	0.7060	0.6545	0.6616	0.7210	0.7255	0.6538
		(-0.0093)	(0.0005)	(0.0007)	(0.0005)			(-0.0071)	(-0.0665)	(-0.0710)	(0.0007)
0.7988	0.7001	0.7067	0.6992	0.6990	0.6966	0.7988	0.6544	0.6593	0.7047	0.7087	0.6532
0.0000	0.0074	(-0.0066)	(0.0009)	(0.0011)	(0.0009)	0.0000	0 (510	(-0.0049)	(-0.0503)	(-0.0543)	(0.0012)
0.9022	0.6974	(0.0023)	0.6966	0.6964	0.6950	0.9022	0.6543	(-0.0023)	(-0.0268)	(-0.0295)	(0.0009)
		(-0.0033)	(0.0008)	(0.0010)	(0.0008)			Tomporatu	$r_2 = 212.15$ I	7	
0.1077	0.6360	0.6395	0.6865	0.6013	0.6363	0 1077	0 5909	0 5934	0.6644	0.6725	0 5908
0.1077	0.0500	(-0.0035)	(-0.0505)	(-0.0553)	(-0.0003)	0.1077	0.5909	(-0.0025)	(-0.0735)	(-0.0735)	(0.0001)
0.2009	0.6311	0.6371	0.7173	0.7237	0.6318	0.2009	0.5861	0.5912	0.7141	0.7233	0.5868
		(-0.0060)	(-0.0862)	(-0.0926)	(-0.0007)			(-0.0051)	(-0.1280)	(-0.1280)	(-0.0007)
0.3110	0.6263	0.6344	0.7432	0.7499	0.6274	0.3110	0.5815	0.5885	0.7574	0.7649	0.5828
		(-0.0081)	(-0.1169)	(-0.1236)	(-0.0011)			(-0.0070)	(-0.1759)	(-0.1759)	(-0.0013)
0.4090	0.6232	0.6320	0.7555	0.7623	0.6241	0.4090	0.5787	0.5862	0.7792	0.7852	0.5797
		(-0.0088)	(-0.1323)	(-0.1391)	(-0.0009)			(-0.0075)	(-0.2005)	(-0.2005)	(-0.0010)
0.4991	0.6211	0.6298	0.7576	0.7645	0.6217	0.4991	0.5766	0.5841	0.7840	0.7899	0.5774
0.0071	0 (104	(-0.0087)	(-0.1365)	(-0.1434)	(-0.0006)	0.6071	0.5750	(-0.00/5)	(-0.2074)	(-0.2074)	(-0.0008)
0.6071	0.6194	0.6272	0.7481	0.7558	0.6195	0.6071	0.5750	0.5817	0.7702	0.7780	0.5753
0 7060	0.6187	(-0.0078)	(-0.1287) 0.7285	(-0.1304)	(-0.0001)	0 7060	0 5743	(-0.0007)	(-0.1952)	(-0.1932)	(-0.0003)
0.7000	0.0187	(-0.0249)	(-0.1098)	(-0.1180)	(0.0006)	0.7000	0.3743	(-0.0051)	(-0.1655)	(-0.1655)	(0.004)
0 7988	0.6186	0.6227	0 7012	0 7093	0.6175	0 7988	0 5739	0 5773	0.6976	0 7096	0.5730
0.7700	0.0100	(-0.0041)	(-0.0826)	(-0.0907)	(0.0011)	0.7900	0.5757	(-0.0034)	(-0.1237)	(-0.1237)	(0.0009)
0.9022	0.6182	0.6203	0.6621	0.6678	0.6174	0.9022	0.5735	0.5750	0.6380	0.6476	0.5726
		(-0.0021)	(-0.0439)	(-0.0496)	(0.0008)			(-0.0015)	(-0.0645)	(-0.0645)	(0.0009)
					Styrene +	<i>m</i> -Xylene					
		Temperatur	e = 298.15 H	K				Temperatur	re = 303.15 I	K	
0.1004	0.5933	0.5912	0.5933	0.5934	0.5933	0.1004	0.5591	0.5566	0.5761	0.5796	0.5590
		(0.0021)	(0.0000)	(-0.0001)	(0.0000)			(0.0025)	(-0.0170)	(-0.0205)	(0.0001)
0.2049	0.6061	0.6021	0.6060	0.6062	0.6060	0.2049	0.5714	0.5669	0.6032	0.6084	0.5713
0.2120	0 (101	(0.0040)	(0.0001)	(-0.0001)	(0.0001)	0.0100	0.5020	(0.0045)	(-0.0318)	(-0.0370)	(0.0001)
0.3120	0.6191	0.6136	0.6188	0.6189	0.6188	0.3120	0.5838	0.5777	0.6269	0.6324	0.5836
0.4007	0.6208	(0.0055)	(0.0003)	(0.0002)	(0.0003)	0.4007	0 5047	(0.0001)	(-00451)	(-0.0480)	(0.0002)
0.4097	0.0508	(0.0243)	(0.0303)	(0.0304)	(0.0303)	0.4097	0.3947	(0.3877)	(-0.0443)	(-0.0494)	(0.0943)
0 5032	0 6417	0.6348	0.6411	0.6411	0.6411	0 5032	0.6050	0 5976	0.6573	0.6614	0.6048
0.0002		(0.0069)	(0.0006)	(0.0006)	(0.0006)			(0.0074)	(-0.0523)	(-0.0564)	(0.0002)
0.6075	0.6533	0.6468	0.6530	0.6529	0.6530	0.6075	0.6160	0.6089	0.6668	0.6698	0.6159
		(0.0064)	(0.0003)	(0.0003)	(0.0003)			(0.0071)	(-0.0508)	(-0.0538)	(0.0001)
0.7065	0.6639	0.6585	0.6640	0.6638	0.6640	0.7065	0.6260	0.6199	0.6709	0.6729	0.6261
		(0.0054)	(-0.0001)	(0.0001)	(-0.0001)			(0.0061)	(-0.0449)	(-0.0469)	(-0.0001)
0.7958	0.6733	0.6693	0.6737	0.6735	0.6737	0.7958	0.6347	0.6301	0.6704	0.6716	0.6350
0.0004	0.0007	(0.0040)	(-0.0004)	(-0.0002)	(-0.0004)	0.0004	0 (1 1 0	(0.0046)	(-0.0357)	(-0.0369)	(-0.0003)
0.8924	0.6835	(0.0813)	(-0.0039)	(-0.003)	(-0.0004)	0.8924	0.6440	(0.0413)	(-0.0213)	(-0.0210)	(-0.0003)
		(0.0022)	(0.000+)	(0.0005)	(0.0004)			(0.0027)	(0.0215)	(0.0219)	(0.0005)

Viscosities of Binary Mixtures of Styrene with Xylene and Toluene at Different Temperatures 3901

Temperature = 308.15 K					Temperature = 313.15 K						
0.1004	0.5130	0.5100	0.5484	0.5565	0.5127	0.1004	0.4930	0.4897	0.5418	0.5535	0.6927
		(0.0030)	(-0.0354)	(-0.0435)	(0.0003)			(0.0033)	(-0.0488)	(-0.0605)	(0.0003)
0.2049	0.5265	0.5214	0.5943	0.6053	0.5264	0.2049	0.5043	0.4984	0.5981	0.6135	0.5040
		(0.0051)	(-0.0678)	(-0.0788)	(0.0001)			(0.0058)	(-0.0939)	(-0.1093)	(0.0003)
0.3120	0.5402	0.5333	0.6337	0.6439	0.5402	0.3120	0.5150	0.5076	0.6455	0.6593	0.5151
		(0.0069)	(-0.0935)	(-0.1037)	(0.0000)			(0.0073)	(-0.1305)	(-0.1444)	(-0.0001)
0.4097	0.5523	0.5445	0.6613	0.6692	0.5524	0.4097	0.5243	0.5162	0.6767	0.6871	0.5248
		(0.0078)	(-0.1090)	(-0.1169)	(-0.0001)			(0.0081)	(-0.1524)	(-0.1628)	(-0.0005)
0.5032	0.5635	0.5555	0.6790	0.6843	0.5638	0.5032	0.5331	0.5246	0.6940	0.7013	0.5336
		(0.0080)	(-0.1155)	(-0.1208)	(-0.0003)			(0.0085)	(-0.1609)	(-0.1682)	(-0.0005)
0.6075	0.5758	0.5680	0.6879	0.6909	0.5761	0.6075	0.5426	0.5342	0.6977	0.7028	0.5430
		(0.0078)	(-0.1121)	(-0.1151)	(-0.0003)			(0.0084)	(-0.1551)	(-0.1602)	(-0.0004)
0.7065	0.5872	0.5801	0.6853	0.6871	0.5873	0.7065	0.5513	0.5436	0.6857	0.6902	0.5513
0.7050	0.5070	(0.0071)	(-0.0981)	(-0.0999)	(-0.0001)	0.7050	0.5505	(0.0077)	(-0.1344)	(-0.1389)	(0.0000)
0.7958	0.5970	0.5914	0.6739	(0.6752)	0.5971	0.7958	0.5585	0.5522	0.6625	0.6672	0.5584
0.8024	0 6072	(0.0030)	(-0.0709)	(-0.0782)	(-0.0001)	0.8024	0 5656	(0.0003)	(-0.1040)	(-0.1087)	(0.0001)
0.8924	0.6072	(0.0038)	(0.0525)	(0.0534)	(0.0073)	0.8924	0.5656	0.5018	(0.0250)	(0.0298)	0.5055
		(0.0034)	(-0.0431)	(-0.0402)	(-0.0001)	V-1		(0.0038)	(-0.0000)	(-0.0042)	(0.0001)
			200 15 1	<i>r</i>	Styrene +	<i>p</i> -Xylene			202.15.1	· r	
		Temperatur	re = 298.15 H	K				Temperatur	re = 303.15 I	<u> </u>	
0.0994	0.6139	0.1682	0.6128	0.6125	0.6128	0.0994	0.5590	0.5617	0.5805	0.5838	0.5577
0.0000	0 (170	(-0.0043)	(0.0011)	(0.0014)	(0.0011)	0.0000	0.5((0)	(-0.0027)	(-0.0215)	(-0.0248)	(0.0013)
0.2029	0.6179	0.6264	0.6166	0.6162	0.6166	0.2029	0.5660	0.5/16	0.6067	0.6115	0.5643
0.2202	0 (240	(-0.0085)	(0.0013)	(0.0017)	(0.0013)	0.2202	0.5745	(-0.0056)	(-0.0407)	(-0.0455)	(0.0017)
0.3383	0.6240	0.6374	0.6236	0.6232	0.6236	0.3383	0.5745	0.5849	0.6351	0.6400	0.5745
0.4022	0 6072	(-0.0134)	(0.0004)	(0.0008)	(0.0004)	0.4022	0.5702	(-0.0104)	(-0.0000)	(-0.0055)	(0.0000)
0.4052	0.0275	(-0.0154)	(-0.0278)	(-0.0273)	(-0.0278)	0.4032	0.3792	(-0.0121)	(-0.0401)	(-0.0500)	(-0.0009)
0.5047	0.6345	0.6512	0.6355	0.6354	0.6355	0.5047	0 5880	0.6015	0.6506	0.6632	0.5807
0.5047	0.0545	(-0.0167)	(-0.0010)	(-0.0009)	(-0.0010)	0.5047	0.5660	(-0.0135)	(-0.0716)	(-0.0752)	(-0.0017)
0.6038	0.6430	0.6596	0.6444	0.6445	0.6444	0.6038	0.5980	0.6117	0.6681	0.6707	0.6002
0.00000	010120	(-0.0166)	(-0.0014)	(-0.0015)	(-0.0014)	010020	0109000	(-0.0137)	(-0.0701)	(-0.0727)	(-0.0022)
0.6933	0.6523	0.6674	0.6537	0.6540	0.6537	0.6933	0.6089	0.6210	0.6717	0.6735	0.6106
		(-0.0151)	(-0.0014)	(-0.0017)	(-0.0014)			(-0.0121)	(-0.0628)	(-0.0646)	(-0.0017)
0.8005	0.6654	0.6769	0.6664	0.6668	0.6664	0.8005	0.6240	0.6324	0.6708	0.6718	0.6244
			(-0.0010)	(-0.0014)	(-0.0010)			(-0.0084)	(-0.0468)	(-0.0478)	(-0.0004)
0.9003	0.6800	0.6858	0.6799	0.6802	0.6799	0.9003	0.6390	0.6432	0.6649	0.6654	0.6386
		(-0.0058)	(0.0001)	(-0.0002)	(0.0001)			(-0.0042)	(-0.0259)	(-0.0264)	(0.0004)
		Temperatur	re = 308.15 H	K		Temperature = 313.15 K					
0.0994	0.5448	0.5465	0.5762	0.5822	0.5435	0.0994	0.5590	0.4971	0.5484	0.5595	0.4948
		(-0.0017)	(-0.0314)	(-0.0374)	(0.0013)			(-0.0011)	(-0.0524)	(-0.0635)	(0.0012)
0.2029	0.5502	0.5541	0.6097	0.6187	0.5486	0.2029	0.5660	0.5052	0.6033	0.6179	0.5010
		(-0.0039)	(-0.0595)	(-0.0685)	(0.0016)			(-0.0028)	(-0.1009)	(-0.1155)	(0.0014)
0.3383	0.5562	0.5643	0.6442	0.6538	0.5565	0.3383	0.5745	0.5160	0.6597	0.6720	0.5101
		(-0.0081)	(-0.0880)	(-0.0976)	(-0.0003)			(-0.0060)	(-0.1497)	(-0.1620)	(-0.0001)
0.4032	0.5598	0.5693	0.6564	0.6654	0.5608	0.4032	0.5792	0.5213	0.6788	0.6889	0.5149
		(-0.0095)	(-0.0966)	(-0.1056)	(-0.0010)			(-0.0073)	(-0.1648)	(-0.1749)	(-0.0009)
0.5047	0.5665	0.5772	0.6692	0.6771	0.5683	0.5047	0.5880	0.5297	0.6969	0.7038	0.5229
		(-0.0107)	(-0.1027)	(-0.1106)	(-0.0018)			(-0.0087)	(-0.1759)	(-0.1828)	(-0.0019)
0.6038	0.5743	0.5851	0.6741	0.6807	0.5764	0.6038	0.5980	0.5380	0.6996	0.7047	0.5314
0 (000	0.5000	(-0.0108)	(-0.0998)	(-0.1064)	(-0.0021)	0.0000	0 (000	(-0.0088)	(-0.1704)	(-0.1755)	(-0.0022)
0.6933	0.5828	0.5923	0.6718	0.6773	0.5845	0.6933	0.6089	0.5456	0.6891	0.6938	0.5397
0.0005	0.5050	(-0.0095)	(-0.0890)	(-0.0945)	(-0.0017)	0.0005	0.(240	(-0.0076)	(-0.1511)	(-0.1558)	(-0.0017)
0.8005	0.5950	(0.0011)	0.6608	(0.0050)	(0.5952)	0.8005	0.6240	0.5550	(0.0614)	(0.1157)	0.5504
0.0002	0.6065	0.6005	(-0.0038)	(-0.0700)	(-0.0002)	0.0002	0.6200	(-0.0043)	(-0.1109)	(-0.1157)	0.5612
0.9005	0.0005	(-0.0030)	(-0.0363)	(-0.0389)	(0.0001)	0.9003	0.0390	(-0.0020)	(-0.0604)	(-0.0646)	(0.0006)

Styrene + Toluene											
Temperature = 298.15 K					Temperature = 303.15 K						
0.1148	0.5952	0.5851	0.5962	0.5972	0.5962	0.1148	0.5786	0.5654	0.5917	0.5963	0.5781
		(0.0101)	(-0.0010)	(-0.0020)	(-0.0010)			(0.0132)	(-0.0131)	-0.0177)	(0.0005)
0.2116	0.6170	0.5968	0.6154	0.6166	0.6154	0.2116	0.5982	0.5748	0.6194	0.6255	0.5962
		(0.0202)	(0.0016)	(0.0004)	(0.0016)			(0.0234)	(-0.0212)	(-0.0273)	(0.0020)
0.3030	0.6362	0.6079	0.6320	0.6329	0.6320	0.3030	0.6142	0.5838	0.6417	0.6480	0.6114
		(0.0283)	(0.0042)	(0.0033)	(0.0042)			(0.0304)	(-0.0275)	-0.0338)	(0.0028)
0.3999	0.6520	0.6197	0.6478	0.6482	0.6478	0.3999	0.6274	0.5933	0.6607	0.6663	0.6254
		(0.0323)	(0.0042)	(0.0038)	(0.0042)			(0.0341)	(-0.0333)	(-0.0389)	(0.0020)
0.5156	0.6658	0.6339	0.6639	0.6636	0.6639	0.5156	0.6390	0.6048	0.6765	0.6808	0.6389
		(0.0319)	(0.0019)	(0.0022)	(0.0019)			(0.0342)	(-0.0375)	(-0.0418)	(0.0001)
0.5976	0.6740	0.6441	0.6735	0.6727	0.6734	0.5976	0.6452	0.6131	0.6829	0.6862	0.6463
		(0.0299)	(0.0005)	(0.0013)	(0.0006)			(0.0321)	(-0.0377)	(-0.0410)	(-0.0011)
0.7070	0.6812	0.6578	0.6835	0.6824	0.6835	0.7070	0.6510	0.6241	0.6849	0.6871	0.6531
		(0.0234)	(-0.0023)	(-0.0012)	(-0.0023)			(0.0269)	(-0.0339)	(-0.0361)	(-0.0021)
0.8028	0.6868	0.6699	0.6898	0.6887	0.6898	0.8028	0.6534	0.6339	0.6805	0.6821	0.6563
		(0.0169)	(-0.0030)	(-0.0019)	(-0.0030)			(0.0195)	(-0.0271)	(-0.0287)	(-0.0029)
0.9124	0.6924	0.6838	0.6940	0.6933	0.6940	0.9124	0.6558	0.6451	0.6687	0.6694	0.6566
		(0.0086)	(-0.0016)	(-0.0009)	(-0.0016)			(0.0107)	(-0.0129)	(-0.0136)	(-0.0008)
Temperature = 308.15 K							Temperatu	re = 313.15 I	K		
0.1148	0.5538	0.5374	0.5801	0.5886	0.5518	0.1148	0.5230	0.5038	0.5668	0.5799	0.5196
		(0.0164)	(-0.0263)	(-0.0348)	(0.0020)			(0.0192)	(-0.0438)	(-0.0569)	(0.0034)
0.2116	0.5722	0.5460	0.6189	0.6300	0.5702	0.2116	0.5392	0.5111	0.6203	0.6361	0.5378
		(0.0262)	(-0.0467)	(-0.0578)	(0.0020)			(0.0281)	(-0.0811)	(-0.0969)	(0.0014)
0.3030	0.5870	0.5541	0.6495	0.6605	0.5854	0.3030	0.5522	0.5181	0.6619	0.6763	0.5525
		(0.0329)	(-0.0625)	(-0.0735)	(0.0016)			(0.0341)	(-0.1097)	(-0.1241)	(-0.0003)
0.3999	0.5990	0.5628	0.6741	0.6837	0.5990	0.3999	0.5632	0.5255	0.6942	0.7052	0.5654
		(0.0362)	(-0.0751)	(-0.0847)	(0.0000)			(0.0377)	(-0.1310)	(-0.1420)	(-0.0022)
0.5156	0.6089	0.5732	0.6917	0.6991	0.6117	0.5156	0.5718	0.5344	0.7141	0.7215	0.5767
		(0.0357)	(-0.0828)	(-0.0902)	(-0.0028)			(0.0374)	(-0.1423)	(-0.1497)	(-0.0049)
0.5976	0.6148	0.5807	0.6958	0.7019	0.6182	0.5976	0.5766	0.5408	0.7149	0.7046	0.5820
		(0.0341)	(-0.0810)	(-0.0871)	(-0.0034)			(0.0358)	(-0.1383)	(-0.1280)	(-0.0054)
0.7070	0.6202	0.5907	0.6904	0.6951	0.6234	0.7070	0.5816	0.5494	0.6988	0.6756	0.5852
		(0.0295)	(-0.0702)	(-0.0749)	(-0.0032)			(0.0322)	(-0.1172)	(-0.0940)	(-0.0036)
0.8028	0.6226	0.5996	0.6755	0.6794	0.6248	0.8028	0.5834	0.5570	0.6695	0.6256	0.5845
		(0.0230)	(-0.0529)	(-0.0568)	(-0.0022)			(0.0264)	(-0.0861)	(-0.0422)	(-0.0011)
0.9124	0.6236	0.6098	0.6476	0.6500	0.6226	0.9124	0.5822	0.5658	0.6208	0.5728	0.5797
		(0.0138)	(-0.0240)	(-0.0264)	(0.0010)			(0.0164)	(-0.0386)	(0.0094)	(0.0025)

Fig. 1. Deviations of viscosity, $\Delta\eta$ of binary mixtures of styrene (STY) with, *m*-xylene (MX), *o*-xylene (OX), *p*-xylene (PX) and toluene (TOL) at 298.15 K

the species taking part in viscous flow. In a highly structured liquid there will be considerable degree of order and, hence, for cooperative movement of entities, a large heat of activation, is needed for the flow process. Therefore, a perusal of Table-3 indicates that the formation of activated species necessary for viscous flow seems to be easy in toluene and *m*-xylene rich

Fig. 2. Deviations of Gibbs free energy of activation, ΔG of binary mixtures of styrene (STY) with *m*-xylene (MX), *o*-xylene (OX), *p*-xylene (PX) and toluene (TOL) at 298.15 K

region, owing to the low values of ΔH^* and become difficult in the *p*-xylene rich region and relatively more difficult in *o*-xylene rich region owing to the high values of ΔH^* , as the mole fraction of styrene in the mixture increases. This is supported by the decreasing value of ΔS^* as the amount of styrene in the mixture increases.

VAL	UES OF A ₁ I	TAB. PARAMETE	LE-2 ERS OF EOU	JATION (3)	AND			
ST	ANDARD D	EVIATIONS	$\sigma(Y^{E})$ FOI	R THE BINA	RY			
	MIXTURES	AT DIFFER	ENT TEMP	PERATURES	5			
Temp. (K)	A_1	A_2	A ₃	A_4	$\sigma\left(Y^{\text{E}}\right)$			
		Styrene +	o-Xylene					
		Δη (n	nPa s)					
298.15	-50.4953	-12.7674	-6.4423	12.3297	0.0232			
303.15	-41.5759	-15.4058	5.7951	19.9920	0.0541			
308.15	-36.1407	-10.7258	6.8613	6.3634	0.0329			
313.15	-31.2402	-12.0407	9.7348	16.1430	0.0660			
		$\Delta G (kJ)$	mol ⁻¹)					
298.15	-16.7705	-3.4281	-2.0601	4.0865	0.0079			
303.15	-16.0089	-5.2744	3.1547	6.2754	0.0196			
308.15	-15.0945	-3.9511	2.9986	2.6967	0.0127			
313.15	-14.4420	-4.9681	4.2022	7.8219	0.0301			
		Styrene +	<i>m</i> -Xylene					
		<u>Δη (n</u>	nPa s)					
298.15	13.2243	-0.6995	-10.4177	6.7910	0.0245			
303.15	16.1446	-1.0832	-3.4816	3.3272	0.0307			
308.15	17.8904	-1.4/31	5.5038	-0.8656	0.0098			
313.15	22.5207	-1.8035	10.8366	-4.2160	0.0238			
$\Delta G (kJ mol^{-1})$								
298.15	9.8695	0.4373	-3.9723	2.3377	0.0103			
303.15	11.558/	0.3828	-1.4885	1.3131	0.0125			
308.15	14./55/	0.5579	2.2294	0.1200	0.0071			
515.15	15.7545	0.5579	5.2440	-1.8032	0.0117			
		Stylene +	<i>p</i> -Aylelle					
208.15	74 8402	17 0281	15 2080	10.0607	0.0013			
296.15	-74.0402 63.2412	18 0725	22 1068	-10.0097	0.0913			
308.15	-03.2413	14 1762	23.1008	-11.0049	0.0372			
313.15	-41 8872	16 7790	26 2796	-16 1571	0.0109			
515.15	41.0072	AG (kI	mol^{-1}	10.1371	0.0107			
298.15	-26.6713	5,3357	6.5930	-3.8192	0.0357			
303.15	-23 2398	6 4175	10 7720	-5 1509	0.0263			
308.15	-20,1728	5.3465	10.1862	-0.9457	0.0175			
313.15	-17.8032	7.3013	13.5294	-7.6516	0.0057			
		Styrene +	- Toluene					
		Δŋ (n	nPa s)					
298.15	125.3651	34.5878	-41.0640	-73.5294	0.3131			
303.15	133.6474	27.4522	-3.0375	-58.8513	0.0356			
308.15	140.7858	23.4037	29.6321	-41.8684	0.1337			
313.15	147.0969	9.9197	53.1088	-0.6225	0.1037			
$\Delta G (kJ mol^{-1})$								
298.15	52.6652	18.4705	-12.9783	-31.8255	0.1184			
303.15	57.6360	15.2280	0.2769	-22.5832	0.0182			
308.15	64.0861	14.9587	14.8743	-16.2929	0.0563			
313.15	71.6212	9.4472	27.0228	3.6673	0.0485			

TADLEO

Theoretical analysis

Correlation of excess volumes with viscosity: The excess volumes were calculated using the deviation in viscosity data by a correlation proposed by Singh²⁵. According to the relation, the deviations in viscosity ($\Delta\eta$) and excess molar volumes (V^E) are related to each other as:

$$\Delta \eta = K V^{E} \tag{7}$$

where K is a fitting parameter. The values of K for the presently investigated mixtures were evaluated by using the $\Delta\eta$ and experimentally reported V^E data^{16,17} at x₁ = 0.5 (equimolar fraction). The values of K for styrene + *o*-, *m*-, *p*-xylene and toluene are found to be 144.31, 162.35, 191.80 and -329.37 mPa s m⁻³ at

ACTIVATION OF VISCOUS FLOW FOR THE BINARY LIQUID MIXTURES ALONG WITH THE								
LINEAR CORRELATION FACTOR, r								
X ₁	$\Delta H^* (kJ mol^{-1})$	$\Delta S^* (JK^{-1} mol^{-1})$	r					
	Styrene +	- o-Xylene						
0.0000	11.213	-1.149	0.993					
0.1066	10.845	-1.139	0.994					
0.1993	10.605	-1.132	0.995					
0.3046	10.383	-1.126	0.996					
0.3952	10.160	-1.120	0.997					
0.5013	9.969	-1.114	0.997					
0.6015	9.717	-1.107	0.998					
0.7135	9.493	-1.100	0.998					
0.8020	9.324	-1.095	0.997					
0.9078	9.161	-1.090	0.997					
1.0000	9.037	-1.086	0.996					
	Styrene +	m-Xylene						
0.0000	9.381	-1.108	0.986					
0.0702	9.172	-1.099	0.990					
0.1162	9.044	-1.094	0.993					
0.1687	8.981	-1.090	0.996					
0.2383	8.952	-1.088	0.998					
0.3091	8.923	-1.086	0.999					
0.4032	8.868	-1.084	0.999					
0.5043	8.820	-1.081	0.999					
0.6492	8.821	-1.081	0.999					
0.8251	8.888	-1.082	0.998					
1.0000	9.037	-1.086	0.996					
Styrene + <i>p</i> -Xylene								
0.0000	9.870	-1.120	0.973					
0.0702	9.540	-1.109	0.976					
0.1162	9.283	-1.100	0.979					
0.1687	9.100	-1.094	0.984					
0.2383	9.005	-1.091	0.985					
0.3091	8.950	-1.089	0.988					
0.4032	8.890	-1.086	0.990					
0.5043	8.837	-1.083	0.992					
0.6492	8.744	-1.079	0.994					
0.8251	8.868	-1.082	0.995					
1.0000	9.037	-1.080	0.996					
0.1149	6 6 1 1	1 027	0.092					
0.1148	0.011	-1.027	0.983					
0.2110	J.000 6 155	-0.999	0.985					
0.3030	6 4 97	-1.004	0.985					
0.5999	6725	-1.012	0.966					
0.5150	7.022	-1.018	0.991					
0.3970	7.022	-1.025	0.992					
0.7070	7.202	-1.050	0.995					
0.0028	7.521	1.031	0.994					
0.9124	8 024	-1.053	0.990					
1 0000	9.037	-1.086	0.996					
1.0000	2.051	1.000	0.770					

TABLE-3 VALUES OF ENTHALPY, ΔH^* AND ENTROPY, ΔS^* OF

298.15 K, respectively. From the experimental $\Delta\eta$ data, the V^E values at various mole fractions were calculated. The V^E values calculated from viscosity data using eqn. 7 were compared with reported V^E values^{16,17}, obtained experimentally for all the mixtures at 298.15 K and are presented in Fig. 3. A reasonable good agreement has been found between the experimentally calculated V^E and theoretically predicted V^E η values. Thereby, it emphasizes the effectiveness of the present approach.

Fig. 3. Comparison of V^E between experimental value (Exp), and the V^E η value calculated by viscosity data (VD) of binary mixtures of styrene (STY) with *m*-xylene (MX), *o*-xylene (OX), *p*-xylene (PX) and toluene (TOL) at 298.15 K

Correlation equations for viscosity: Various equations exist in literature to calculate the viscosities of the mixtures theoretically in terms of pure component data. Grunberg and Nissan²⁶ suggested the expression:

$$\ln \eta = x_1 \ln \eta_1 + x_2 \ln \eta_2 + x_1 x_2 G_{12}$$
(8)

where G_{12} is a parameter proportional to interchange energy, which represents a measure of the strength of interaction between the component molecules in the mixture. It allows for the positive and negative deviations from the addivity rule. Katti and Chaudhary²⁷ derived the following equation:

$$\ln(\eta V) = x_1 \ln(\eta_1 V_1) + x_2 \ln(\eta_2 V_2) + x_1 x_2 W_{vis} / RT \qquad (9)$$

where W_{vis}/RT is an interaction term.

Hind *et al.*²⁸ proposed the following equation:

$$\eta = x_1^2 \eta_1 + x_2^2 \eta_2 + 2x_1 x_2 H_{12}$$
(10)

where H_{12} is attributed to unlike pair interactions.

$$\eta = \frac{x_1 \eta_1}{x_1 + x_1 \phi_{12}} + \frac{x_2 \eta_2}{x_2 + x_1 \phi_{21}}$$
(11)

where ϕ_{12} and ϕ_{21} are calculated by using the following equations:

$$\phi_{12} = \frac{\left[1 + \left(\frac{\eta_1}{\eta_2}\right)^{1/2} \left(\frac{M_2}{M_1}\right)^{1/4}\right]^2}{\left\{8 + \left[1 + \left(\frac{M_1}{M_1}\right)\right]\right\}^{1/2}}$$
(12)

$$\phi_{21} = \phi_{12} \frac{\eta_2}{\eta_1} \frac{M_1}{M_2}$$
(13)

The predicted values of viscosities of the binary mixtures at 298.15, 303.15, 308.15 and 313.15 K were compared with the experimentally measured values and the results are presented in terms of average deviations in Table-1. A close perusal of Table-1 reveals that all the empirical equations tested show good agreements for all the binary mixtures investigated. The results show that Grunberg-Nissan provides the best results followed by Wilke relation in reproducing the experimental viscosity for the mixtures. However, Katti & Chaudhari²⁷ and Hind *et al.*²⁸ shows relatively large deviations for the binary mixtures.

Conclusion

The present study is based on the viscometric behaviour of binary mixtures of (styrene) with o-, m- or p-xylene and toluene at different temperatures. The values were calculated from viscosity data. A reasonable good agreement has been found between the experimentally calculated and theoretically predicted V^E values. It emphasizes the effectiveness of the present approach. $\Delta\eta$ and ΔG values are positive for the binary mixtures of styrene with toluene and *m*-xylene and the values turn negative for o-xylene, become more so for p-xylene, over the whole composition range and at all the investigated temperatures. This indicates that dispersion forces dominate in these mixtures. The positive contribution to ΔG attributed to the presence of specific interactions whereas negative contribution may be ascribed to the dispersion forces. The positive values of ΔH^* and ΔS^* along with the linear correlation factor, r were also deduced. The results indicates that the formation of activated species necessary for viscous flow seems to be easy in toluene and *m*-xylene rich region, resulting the lower values of ΔH^* and become difficult in the *p*-xylene rich region and relatively more difficult in o-xylene rich region owing to the high values of ΔH^* . This trend is supported by the decreasing value of ΔS^* as the amount of styrene in the mixture increases. It is found that experimental and predicted viscometric studies are in good agreement with each other.

REFERENCES

- A.K. Mehrotra, W.D. Monnery and W.Y. Svrcek, *Fluid Phase Equilib.*, 117, 344 (1996).
- P.J. Carvalho, T. Regueira, L.M.N.B.F. Santos, J. Fernandez and J.A.P. Coutinho, J. Chem. Eng. Data, 55, 645 (2010).
- 3. A. Ali, F. Nabi, F.A. Itoo and S. Tasneem, J. Mol. Liq., 143, 141 (2008).
- 4. A. Ali, F. Nabi and M. Tariq, Int. J. Thermophys., **30**, 464 (2009).
- 5. A. Ali, S. Tasneem and F. Nabi Z. Naturforsch., 65, 749 (2010).
- 6. K. Tamura, T. Sonoda and S. Murakani, J. Sol. Chem., 28, 777 (1999).
- B. Gracia, R. Alcalde, J.M. Leal and J.S. Matos, J. Chem. Soc. Faraday Trans., 93, 1115 (1997).
- 8. S.L. Oswal, P. Oswal and R.P. Phalak, J. Sol. Chem., 27, 507 (1998).
- 9. D.L. Patterson, J. Sol. Chem., 23, 105 (1994).
- 10 M.D. Perez, J.J.D. Llano, L. Segade, C. Franjo and O.J. Cabeza, *Thermal Anal. Calorim.*, 80, 289 (2005).
- R.D. Peralta, R. Infante, G. Cortez, G. Candenas and J. Wisniak, *Int. J. Thermophys.*, 24, 1061 (2003).
- 12. S. Osinska, Chem. Soc. Rev., 22, 205 (1993).
- Thermodynamic Research Center, TRC Thermodynamic Tables Hydrocarbons (The Texas A&M University System, College Station) (1995).
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, Wiley-Interscience: New York, edn. 4 (1986).
- 15. G. Moumouzias and G. Ritzoulis, J. Chem. Eng. Data, 37, 482 (1992).
- 16. A. Ali and F. Nabi, Acta Phys. Chim. Sin., 24, 47 (2008).
- A. Ali, F. Nabi, M. Tariq, R. Patel, Shahjahan and S. Tasneem, *J. Indian Chem. Soc.*, 86, 1042 (2009).
- 18. O. Redlick and A.T. Kister, Ind. Eng. Chem., 40, 345 (1948).
- 19. R.J. Fort and W.R. Moore, Trans. Faraday Soc., 61, 2102 (1965).
- 20. S. Oswal and M.V. Rathnam, Can. J. Chem., 62, 2851 (1984).
- 21. T.M. Reed and T.E. Taylor, J. Phys. Chem., 59, 58 (1959).
- H. Eyring and M.S. John, Significant Liquid Structures, John Wiley & Sons, New York (1969).
- 23. H. Eyring, J. Chem. Phys., 4, 283 (1936).
- F. Corradiani, L. Marcheselli, A. Marchetti, M. Tangliazucchi, L. Tassi and G. Tossi, *Bull. Chem. Soc. (Japan)*, 65, 503 (1992).
- 25. P.P. Singh, Indian J. Chem., 27A, 469 (1988).
- 26. L. Grunberg and A.H. Nissan, Nature, 164, 799 (1949).
- 27. P.K. Katti and Chaudhri, J. Chem. Eng. Data, 9, 442 (1964).
- R.K. Hind, E. McLaughlin and A.R. Ubbelohde, *Trans. Faraday Soc.*, 56, 328 (1960).
- 29. C.R. Wilke, J. Chem. Phys., 18, 517 (1950).