
INTRODUCTION

In this paper, the ozone kinetics is being investigated by

using the homotopy perturbation method. The use of ozone

has been shown to be efficient in inactivating pathogens and

reducing bacterial gill disease in freshwater re-circulation systems.

Even in marine systems, for handling environmental contami-

nants, the use of ozone, is increasingly becoming very popular.

Furthermore, ozone has been shown to improve water quality

by oxidizing nitrite, natural organic matter, ammonia and removal

of fine suspended particles as well as re-oxygenation of the

water1,2. Non-linear equations, governing to the problem, are

solved by applying homotopy perturbation method for the first

time. This reliable analytic approximation to the solution is of

great interest. Mathematical modelling of the problem leads

to the following system of two non-linear differential equations:
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where D(t) is the concentration of neutral organic matter frac-

tion with fast ozone demand (mg/L); C(t), dissolved oxygen

concentration at time t (mg/L); KD, first-order ozone decom-

position rate constant (1/min); KR, second-order rate constant

(1/mg min). Recently, Biazar et al.3 used Adomian decompo-

sition method for solving the governing problem. In this study,

we will use homotopy perturbation method to obtain analytical

solution for the problem of mass transfer of ozone of the second

order from a gaseous phase into an aqueous pahse.
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The homotopy perturbation method was first proposed

by Ji-Huan He4-6. The essential idea of this method is to intro-

duce a homotopy parameter, say p, which takes values from

0 to 1. When p = 0, the system of equations usually reduces to

a sufficiently simplified form, which normally admits a rather

simple solution. As p is gradually increased to 1, the system

goes through a sequence of deformations, the solution for each

of which is close to that at the previous stage of deformation.

Eventually at p = 1, the system takes the original form of the

equation and the final stage of deformation gives the desired

solution. One of the most remarkable features of the homotopy

perturbation method is that usually just a few perturbation terms

are sufficient for obtaining a reasonably accurate solution. This

technique has been employed to solve a large variety of linear

and non-linear problems7-16. This technique is further applied

by He17-20.

Solution by the homotopy perturbation method: In order

to solve eqn. 1 by homotopy perturbation method, we cons-

truct the following homotopies:
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Assume the solution of eqn. 1 in the forms:
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Substituting eqns. 4-5 into eqns. 2-3 and collecting terms

of the same power of p, we get the following set of differential

equations:
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Using eqns. 6 and 7, we obtain the following iterative

formula:
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If we solve the above equation system 8-11, we succes-

sively obtain:
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and so on; in this manner, the rest of the components of the

homotopy perturbation series can be obtained. Then the se-

ries solutions expression by HPM can be written in the form:
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But for practical numerical computations, we shall use

the finite 4-terms approximation of C(t) as C(t) ≈∑
=

3
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C and

the 4-terms approximation of D(t) as ≈∑
=

3
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These approximations are presented as follows:
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Numerical study and discussion: For numerical study,

let us start with stating the relationship of KD and KR with

other parameters as:
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where AD and AR, frequency factors for ozone decomposition

reactions (1/min); [OH–] , concentration of hydroxide ion

(mol/l); x , reaction order ; E, activation energy (kcal/mol); R,

gas constant (kJ/K mol); T, temperature (K). In this study the

values in Table-1 considered.

Fig. 1 presents the behaviour of ozone concentration and

natural organic matter, the values of the parameters from Table-1

are substituted in the solutions and Fig. 1 shows the changes

in residual ozone with time. The results suggest that ozone

decomposes at a faster rate as with increases in the reaction

order of the hydroxyl ion.
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TABLE-1 
MODEL PARAMETERS AND CONSTANTS 

Parameter Values 

E (kcal/mol) 

R (kJ/K mol) 

AD (1/min) 

AR (1/min) 

C(0) (mg/L) 

D(0) (mg/L) 

OH– 

8.0 × 104 

8.314 

109 

0.5 × 109 

2 

10–5 

0.8×109 
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Fig. 1. Plots of the second-order reaction for different values of x versus

time

Fig. 2 shows the effect of temperature on the ozone decom-

position. The residual ozone concentration decreases at a faster

rate, as temperature of the marine water was increase from 5

to 15 ºC.
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Fig. 2. Plots of the second-order reaction neutral organic matter for different

values of x versus time

Fig. 3 shows the effect of hydroxyl ion reaction order on

the degradation of the natural organic matter. The neutral organic

matter degrades at a faster rate as the reaction order of the

hydroxyl ion decreases.

Fig. 4 shows the effect of temperature on the degradation

of the natural organic matter. The neutral organic matter degrades

at a faster rate as the temperature increases.
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Fig. 3. Plots of first-order reaction neutral organic matter versus time
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Fig. 4. Plots of the second-order reaction neutral organic matter for different

temperatures versus time

Conclusion

In this paper, the homotopy perturbation method was

employed to solve the problem of mass transfer of ozone of

the second order in aqueous. We obtained the approximate

analytical solution of the equation in the form of a convergent

power series with easily computable components. The method

needs much less computational work compared with traditional

methods. The method is extremely simple, easy to use and is

accurate for solving nonlinear equations. It is shown that

homotopy perturbation method is a very fast convergent,

precise and cost efficient tool for solving nonlinear problems.

This homotopy perturbation method will become a much more

interesting method to solving nonlinear problems in science

and engineering.
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