


# Absorption Spectral Study of 4*f*-4*f* Transitions for the Interaction of Nd(III) with Different Amino Acids in Presence and Absence of Ca(II)/Zn(II)

H. DEBECCA DEVI and N. RAJMUHON SINGH\*

Department of Chemistry, Manipur University, Canchipur, Imphal-795 003, India

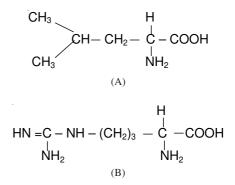
\*Corresponding author: Fax: +91 385 2435145; E-mail: rajmuhon@yahoo.co.in

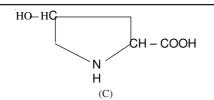
(Received: 29 October 2010;

Accepted: 27 April 2011)

AJC-9853

By employing comparative absorption and quantitative spectral analysis of hypersensitive and pseudohypersensitive transitions using 4*f*-4*f* transitions as probe, the interaction of Nd(III) with L-leucine, L(-)-hydroxyproline and L-(+)-arginine in presence and absence of Ca(II)/Zn(II) has been studied in four different aquated organic solvents, *i.e.*, methanol (CH<sub>3</sub>OH), acetonitrile (CH<sub>3</sub>CN), dimethylformamide (DMF), dioxane (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) and their equimolar mixtures. The various energy interaction parameters like Slator-Condon (F<sub>K</sub>), Racah (E<sub>K</sub>) and Lande ( $\xi_{4f}$ ), nephelauxetic parameter ( $\beta$ ), bonding parameter ( $b^{1/2}$ ) and per cent covalency ( $\partial$ ) parameter are calculated using partial and multiple regression method. The values of oscillator strength (P) and computed values of Judd-Ofelt electric dipole intensity parameters (T<sub>λ</sub>) ( $\lambda = 2, 4, 6$ ) are also calculated for different 4*f*-4*f* transitions. The magnitude of changes in various energy interaction parameters as well as in the oscillator strength (P) and Judd-Ofelt intensity values (T<sub>λ</sub>) were used to explore the degree of inner and outer sphere coordination, incidence of covalency and the extent of metal 4*f*-orbital involvement in binding with different ligands.


Key Words: Hypersensitive, Pseudohypersensitive, Oscillator strength, 4f-4f transitions.


#### **INTRODUCTION**

Most of the trivalent lanthanides have internal 4f electron transition spectra in the accessible spectral region which are very much sensitive towards immediate coordination environment. This makes quantitative absorption spectral spectroscopy involving 4*f*-4*f* transitions a powerful tool in the investigation of lanthanide biochemistry. The justification for using paramagnetic lanthanide ions in biochemical investigations, relates to their ability to replace Ca(II) in a specific isomorphous manner. This is due to close similarities between lanthanide ions and Ca(II) in ionic size, donor atom preference, bonding and coordination characteristics<sup>1</sup>. Since lanthanide ions can substitute for Ca(II) in living systems, studies of the bonding modes and structures of lanthanide complexes with some amino acids are of interest. Studies on lanthanide complexes with some amino acids in solution have been carried out using NMR, luminescence and titration methods to determine the thermodynamic stability constants<sup>2-4</sup>. Shah and Shah<sup>5</sup> studied comparative 4f-4f transition spectra of Pr(III) with lysozyme by using the energy interaction parameters to explain the behaviour of binding between them. In our previous study<sup>6</sup>, we have studied the interaction of Pr(III) with different amino acids in aqueous and aquated organic solvents. We has also studied the interaction of Nd(III) with DL-valine, DL-alanine

and  $\beta$ -alanine in presence and absence of Ca(II)/Zn(II) in aqueous and different aquated organic solvents<sup>6</sup>.

Amino acids are ligands which offer potential binding sites through carboxylate oxygen and amino nitrogen. The different amino acids chosen for study are L-leucine, L(-)hydroxyproline and L-(+)-arginine. The first two amino acids are neutral amino acids and the last one is basic amino acid. Amino acids are very much necessary for maintaining good health in which some of them are essential and some are nonessential. Among them, L-leucine and L-(+)-arginine are essential amino acids while L(-)-hydroxyproline is nonessential amino acid. The structures of different amino acids are given in Fig. 1.





 $\label{eq:Fig. 1. Structures of (A) L-leucine, (B) L-(+)-arginine, (C) L (-)-hydroxyproline (C$ 

Cacium(II) and zinc(II) are endogenous metal ions which have different coordinating behaviour towards biological molecules *i.e.*, Ca(II) which is a hard metal ion prefers hard donor sites like carboxylic and carbonyl groups and Zn(II) which is a soft metal ion prefers soft donor sites like amino group in amino acids. Since Pr(III)/Nd(III) resembles to Ca(II) and Zn(II), its complexation can provide information about the coordination characteristics of diamagnetic molecules, *i.e.*, Ca(II) and Zn(II) with biomolecules during biochemical reactions. This is the reason that the paramagnetic lanthanides are good spectral probes for exploring the biological roles of Ca(II) by its isomorphous substitute<sup>1</sup>. The present work is mainly concentrated to the quantitative spectral energy interaction parameters and intensity parameters of Nd(III) complexation with L-leucine, L(-)-hydroxyproline and L-(+)-arginine in presence and absence of Ca(II) and Zn(II) in aqueous and different aquated organic solvents. The present work reports the ligand mediated pseudohypersensitive transitions  ${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}$ ,  $^4I_{9/2} \rightarrow {}^4F_{5/2}, \, {}^4I_{9/2} \rightarrow {}^4F_{7/2} \text{ and } {}^4I_{9/2} \rightarrow {}^4G_{7/2} \text{ of Nd(III) and uses}$ the magnitude and variation of the various energy interaction parameters in support of the intensity parameters like oscillator strength (P) and Judd-Ofelt electric dipole intensity parameters,  $(T_{\lambda})$  ( $\lambda = 2, 4, 6$ ) to reveal the mode of binding with different ligands.

#### **EXPERIMENTAL**

Neodymium(III) nitrate of 99.9 % purity was purchased from CDH analytical reagent and amino acids, *i.e.*, L-leucine, L(-)-hydroxyproline and L-(+)-arginine from Loba Chemie Indo-Australian Co were used for spectral analysis. The solvents used are methanol (CH<sub>3</sub>OH), acetonitrile (CH<sub>3</sub>CN), dimethylformamide (DMF), dioxane (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>). They are of AR grade from Qualigens.

The solutions of Nd(III) nitrate, corresponding amino acid, Ca(II) and Zn(II) salts of  $10^{-2}$  M were prepared in different solvents. The solution spectrum of each solution at pH 4 and at temperature 298 K were recorded on a Perkin-Elmer Lambda-35 UV-VIS spectrophotometer upgraded with high resolution and expansion of scale having water jacket cell holder in the range 350-900 nm.

The energy of 4f-4f transitions,  $E_{so}$ , arising from the most important magnetic interactions which are spin-orbit interactions may be written as

$$\mathbf{E}_{\rm so} = \mathbf{A}_{\rm so} \boldsymbol{\xi}_{\rm 4f} \tag{1}$$

where,  $A_{so}$  is the angular part of spin-orbit interaction and  $\xi_{4f}$  is the radial integral and is known as Lande's parameter.

By first order approximation the energy  $E_j$  of the jth level is given by Wong<sup>7</sup> as

$$F_{j}(F_{K},\xi_{4f}) = E_{0j}(F_{k}^{0},\xi_{4f}^{0}) + \sum_{k=2,4,6} \frac{\partial E_{j}}{\partial F_{K}} \Delta F + \frac{\partial E_{j}}{\partial \xi_{4f}} \Delta \xi_{4f}$$
(2)

where,  $E_{0j}$  is the zero order energy of the jth level. The values of  $F_K$  and  $\xi_{4f}$  are given by

$$F_{\rm K} = F_{\rm K}^0 + \Delta F_{\rm K} \tag{3}$$

$$\xi_{4f} = \xi_{4f}^0 + \Delta \xi_{4f} \tag{4}$$

when  $\Delta F_K << F_K^0$  and  $\Delta \xi_{4f} << \xi_{4f}^0.$ 

The difference between the observed  $E_j$  value and the zero order values,  $\Delta E_j$  is evaluated by

$$\Delta E_{j} = \sum_{K=2,4,6} \frac{\delta E_{j}}{\delta F_{K}} + \frac{\delta E_{j}}{\delta \xi_{4f}} \Delta \xi_{4f}$$
(5)

By using the zero order energy and partial derivatives of Nd(III) ion given by Wong<sup>7,8</sup>, the above equation can be solved by least square technique and the value of  $\Delta F_2$  and  $\Delta \xi_{4f}$  can be found out. From these the values of  $F_2$  and  $\xi_{4f}$  are obtained by relations (3) and (4). The estimated values of  $F_4$  and  $F_6$  are calculated by the relations,

$$\frac{F_4}{F_2} = 0.1380 \text{ and } \frac{F_6}{F_2} = 0.0150$$
 (6)

Nephelauxetic ratio has long been regarded as a measure of covalency<sup>8-10</sup>. The nephelauxetic effect has been interpreted in terms of Slater-Condon and Racah parameters (interelectronic repulsion parameters) as well as by the ratio of the free ion and complex ion<sup>11-15</sup>.

$$\beta = \frac{F_K^c}{F_K^f} \quad \text{or} \quad \beta = \frac{E_c^K}{E_f^K} \tag{7}$$

where,  $F_K (K = 2, 4, 6)$  is the Slater-Condon parameter and  $E^K$  is the Racah parameters for complex and free ions, respectively. The bonding parameter and percent covalency are inter-related to nephelauxetic effect and calculated as

$$\beta^{1/2} = \left[\frac{1-\beta}{2}\right]^{1/2} \tag{8}$$

$$\delta = \left[\frac{1-\beta}{\beta}\right] \times 100 \tag{9}$$

Judd and Ofelt<sup>16,17</sup> observed that the oscillator strength of an induced electric dipole transition relating to the energy of transition ( $\overline{\nu}$ ), square of the matrix element of unit tensor operator, U<sup>( $\lambda$ )</sup> connecting initial  $\langle f^n \Psi J |$  and final  $|f^n \Psi' J' \rangle$  through 3 phenomenological parameters, T<sub> $\lambda$ </sub> ( $\lambda = 2, 4, 6$ ) can be expressed as

$$\mathbf{P} = \sum_{\lambda=2,4,6} T_{\lambda} \overline{\mathbf{v}} \left\langle \mathbf{f}^{n} \Psi \mathbf{J} \| \mathbf{U}^{\lambda} \| \mathbf{f}^{n} \Psi \mathbf{J}' \right\rangle$$
(10)

where,  $U^{(\lambda)}$  is the matrix element of rank  $\lambda$ . The three quantities  $T_2$ ,  $T_4$  and  $T_6$  are related to the radial parts of the  $4f^{N}$  wave functions, the wave functions of perturbing configurations of which the nearest is  $4f^{N-1}5d$ .

The intensity of the absorption band is measured by the experimentally determined Oscillator strength  $P_{obs}$  which is directly proportional to the area under the absorption curve given by the expression

| COMPUTED VALUES OF<br>(1:1:1) AND Nd(III): AM   |                  |                |                   |                  |                  | SOLVENTS (50     |                  |
|-------------------------------------------------|------------------|----------------|-------------------|------------------|------------------|------------------|------------------|
| System                                          | F <sub>2</sub>   | $F_4$          | $F_6$             | $\xi_{4f}$       | β                | b <sup>1/2</sup> | δ                |
|                                                 |                  |                | 1. Solvent-wate   | r                |                  |                  |                  |
| . 1 (                                           |                  | 10.70          | L-Leucine         |                  | 4.0000           | 0.1107           |                  |
| Vd(III)                                         | 328.10           | 48.72          | 5.26              | 957.87           | 1.0286           | 0.1196           | 2.7790           |
| Nd(III): Leu<br>Nd(III): Leu : Ca(II)           | 328.08           | 48.72          | 5.26<br>5.26      | 957.85           | 1.0287           | 0.1198           | 2.7920<br>2.9142 |
|                                                 | 327.88<br>327.82 | 48.70<br>48.69 | 5.26<br>5.26      | 957.83<br>957.80 | 1.0300<br>1.0305 | 0.1225<br>0.1234 | 2.9142           |
| Nd(III): Leu : Zn(II)                           | 521.62           |                | L(-)Hydroxyproli  |                  | 1.0303           | 0.1234           | 2.9300           |
| Nd(III)                                         | 328.25           | 48.62          | 5.25              | 956.21           | 1.0270           | 0.1162           | 2.6292           |
| Vd(III): Hyp                                    | 328.23           | 48.62          | 5.25              | 956.19           | 1.0274           | 0.1170           | 2.6667           |
| Nd(III): Hyp : Ca(II)                           | 327.91           | 48.61          | 5.25              | 956.10           | 1.0295           | 0.1214           | 2.8616           |
| Nd(III): Hyp : Zn(II)                           | 327.86           | 48.60          | 5.26              | 956.07           | 1.0300           | 0.1225           | 2.9137           |
|                                                 |                  |                | L(+)-Arginine     |                  |                  |                  |                  |
| Nd(III)                                         | 328.05           | 48.66          | 5.25              | 957.87           | 1.0281           | 0.1186           | 2.7349           |
| Nd(III) : Arg                                   | 328.01           | 48.66          | 5.25              | 957.82           | 1.0287           | 0.1198           | 2.7905           |
| Nd(III) : Arg : Ca(II)                          | 327.91           | 48.65          | 5.25              | 957.80           | 1.0295           | 0.1216           | 2.8704           |
| Nd(III) : Arg: Zn(II)                           | 327.88           | 48.65          | 5.24              | 957.75           | 1.0300           | 0.1224           | 2.9088           |
|                                                 |                  |                | 2. Solvent -Metha | nol              |                  |                  |                  |
|                                                 |                  |                | L-Leucine         |                  |                  |                  |                  |
| Nd(III)                                         | 330.05           | 48.20          | 5.13              | 927.69           | 1.0070           | 0.0591           | 0.6946           |
| Nd(III): Leu                                    | 329.99           | 48.20          | 5.12              | 927.65           | 1.0078           | 0.0624           | 0.7719           |
| Nd(III): Leu : Ca(II)                           | 329.97           | 48.20          | 5.10              | 927.63           | 1.0079           | 0.0631           | 0.7905           |
| Nd(III): Leu : Zn(II)                           | 329.96           | 48.24          | 5.08              | 927.60           | 1.0080           | 0.0635           | 0.7992           |
|                                                 |                  |                | L(-)Hydroxyproli  |                  |                  |                  |                  |
| Nd(III)                                         | 330.11           | 48.09          | 5.13              | 928.78           | 1.0072           | 0.0599           | 0.7126           |
| Nd(III): Hyp                                    | 330.09           | 48.09          | 5.13              | 928.76           | 1.0076           | 0.0617           | 0.7552           |
| Nd(III): Hyp : Ca(II)                           | 330.02           | 48.05          | 5.12              | 928.74           | 1.0114           | 0.0754           | 1.1248           |
| Nd(III): Hyp : Zn(II)                           | 329.99           | 48.05          | 5.10              | 928.73           | 1.0116           | 0.0761           | 1.1451           |
| Nd(III): Ala : Zn(II)                           | 329.98           | 48.08          | 5.10              | 928.49           | 1.0119           | 0.0772           | 1.1786           |
|                                                 | 220.00           | 40.12          | L(+)-Arginine     | 020.00           | 1.0074           | 0.0607           | 0.7221           |
| Nd(III)                                         | 330.08<br>329.95 | 48.12          | 5.13<br>5.12      | 928.80           | 1.0074           | 0.0607           | 0.7321           |
| Nd(III) : Arg<br>Nd(III) : Arg : Ca(II)         | 329.95<br>329.84 | 48.12<br>48.11 | 5.12              | 928.78<br>928.75 | 1.0116<br>1.0128 | 0.0764<br>0.0801 | 1.1526<br>1.2658 |
| Nd(III) : Arg : Ca(II)<br>Nd(III) : Arg: Zn(II) | 329.84<br>329.82 | 48.11          | 5.09              | 928.73<br>928.73 | 1.0128           | 0.0801           | 1.2038           |
| Nu(III) . Aig. Zii(II)                          | 529.62           | 40.10          | 3. Solvent - MeC  |                  | 1.0132           | 0.0011           | 1.2900           |
|                                                 |                  |                | L-Leucine         | -11              |                  |                  |                  |
| Nd(III)                                         | 330.00           | 48.20          | 5.13              | 928.95           | 1.0078           | 0.0625           | 0.7760           |
| Nd(III): Leu                                    | 329.99           | 48.20          | 5.12              | 928.90           | 1.0079           | 0.0630           | 0.7875           |
| Nd(III): Leu : Ca(II)                           | 329.98           | 48.20          | 5.11              | 928.88           | 1.0081           | 0.0634           | 0.7985           |
| Nd(III): Leu : Zn(II)                           | 329.95           | 48.19          | 5.08              | 928.80           | 1.0082           | 0.0640           | 0.8124           |
|                                                 |                  |                | L(-)Hydroxyproli  |                  |                  |                  |                  |
| Nd(III)                                         | 330.02           | 48.20          | 5.14              | 928.79           | 1.0078           | 0.0624           | 0.7717           |
| Nd(III): Hyp                                    | 330.00           | 48.19          | 5.13              | 928.76           | 1.0082           | 0.0640           | 0.8116           |
| Nd(III): Hyp : Ca(II)                           | 329.98           | 48.18          | 5.12              | 928.74           | 1.0083           | 0.0646           | 0.8268           |
| Nd(III): Hyp : Zn(II)                           | 329.97           | 48.16          | 5.10              | 928.70           | 1.0085           | 0.0650           | 0.8378           |
|                                                 |                  |                | L(+)-Arginine     |                  |                  |                  |                  |
| Nd(III)                                         | 330.07           | 48.14          | 5.13              | 928.99           | 1.0076           | 0.0616           | 0.7534           |
| Nd(III) : Arg                                   | 330.06           | 48.14          | 5.13              | 928.97           | 1.0078           | 0.0623           | 0.7707           |
| Nd(III) : Arg : Ca(II)                          | 330.05           | 48.13          | 5.13              | 928.94           | 1.0079           | 0.0627           | 0.7820           |
| Nd(III) : Arg: Zn(II)                           | 330.04           | 48.12          | 5.12              | 928.93           | 1.0078           | 0.0631           | 0.7909           |
|                                                 |                  |                | 4. Solvent - DM   | F                |                  |                  |                  |
| - 1/                                            |                  |                | L-Leucine         | 0.5.1.5.1        |                  | 0.0              |                  |
| Vd(III)                                         | 329.86           | 48.18          | 5.16              | 934.56           | 1.0115           | 0.0757           | 1.1342           |
| Nd(III): Leu                                    | 329.76           | 48.17          | 5.15              | 934.52           | 1.0129           | 0.0804           | 1.2751           |
| Vd(III): Leu : Ca(II)                           | 329.21           | 48.59          | 5.21              | 934.50           | 1.0180           | 0.0947           | 1.7634           |
| Nd(III): Leu : Zn(II)                           | 329.20           | 48.59          | 5.20              | 934.45           | 1.0181           | 0.0952           | 1.7794           |
|                                                 | 200.00           |                | L(-)Hydroxyproli  |                  | 1.0115           | 0.0750           | 1 1001           |
| Nd(III)                                         | 329.89           | 48.20          | 5.16              | 934.84           | 1.0115           | 0.0759           | 1.1381           |
| Vd(III): Hyp                                    | 329.82           | 48.19          | 5.16              | 934.82           | 1.0126           | 0.0793           | 1.2405           |
| Nd(III): Hyp : Ca(II)<br>Nd(III): Hyp : Zn(II)  | 329.30<br>329.29 | 48.12<br>48.10 | 5.13              | 935.80           | 1.0175           | 0.0934           | 1.7165           |
| NUCLED, $\Pi VD : Z\Pi(\Pi)$                    | 329.29           | 46.10          | 5.10              | 935.75           | 1.0176           | 0.0937           | 1.7260           |

3590 Devi et al.

| L(+)-Arginine          |        |       |      |        |        |        |        |  |  |
|------------------------|--------|-------|------|--------|--------|--------|--------|--|--|
| Nd(III)                | 329.94 | 48.20 | 5.15 | 932.94 | 1.0106 | 0.0728 | 1.0487 |  |  |
| Nd(III) : Arg          | 329.71 | 48.20 | 5.12 | 932.90 | 1.0136 | 0.0825 | 1.3419 |  |  |
| Nd(III) : Arg : Ca(II) | 329.65 | 48.15 | 5.09 | 932.85 | 1.0194 | 0.0985 | 1.9027 |  |  |
| Nd(III) : Arg: Zn(II)  | 329.60 | 48.12 | 5.06 | 932.83 | 1.0199 | 0.0997 | 1.9500 |  |  |
| 5.Solvent – Dioxane    |        |       |      |        |        |        |        |  |  |
| L-Leucine              |        |       |      |        |        |        |        |  |  |
| Nd(III)                | 329.93 | 48.13 | 5.14 | 931.27 | 1.0089 | 0.0668 | 0.8852 |  |  |
| Nd(III): Leu           | 329.88 | 48.12 | 5.14 | 931.92 | 1.0094 | 0.0687 | 0.9344 |  |  |
| Nd(III): Leu : Ca(II)  | 329.85 | 48.12 | 5.14 | 931.90 | 1.0097 | 0.0696 | 0.9594 |  |  |
| Nd(III): Leu : Zn(II)  | 329.82 | 48.11 | 5.13 | 931.85 | 1.0099 | 0.0704 | 0.9811 |  |  |
| L(-)Hydroxyproline     |        |       |      |        |        |        |        |  |  |
| Nd(III)                | 329.94 | 48.17 | 5.14 | 930.30 | 1.0085 | 0.0652 | 0.8439 |  |  |
| Nd(III): Hyp           | 329.91 | 48.17 | 5.13 | 930.25 | 1.0090 | 0.0670 | 0.8892 |  |  |
| Nd(III): Hyp : Ca(II)  | 329.85 | 48.17 | 5.12 | 930.20 | 1.0094 | 0.0686 | 0.9317 |  |  |
| Nd(III): Hyp : Zn(II)  | 329.81 | 48.16 | 5.10 | 930.17 | 1.0097 | 0.0697 | 0.9629 |  |  |
| L(+)-Arginine          |        |       |      |        |        |        |        |  |  |
| Nd(III)                | 329.86 | 48.15 | 5.14 | 931.17 | 1.0089 | 0.0665 | 0.8770 |  |  |
| Nd(III) : Arg          | 329.80 | 48.12 | 5.14 | 931.15 | 1.0094 | 0.0687 | 0.9346 |  |  |
| Nd(III) : Arg : Ca(II) | 329.75 | 48.11 | 5.13 | 931.12 | 1.0110 | 0.0741 | 1.0870 |  |  |
| Nd(III) : Arg: Zn(II)  | 329.69 | 48.09 | 5.12 | 931.10 | 1.0130 | 0.0806 | 1.2838 |  |  |

 $P_{obs} = 4.6 \times 10^{-9} \times \epsilon_{max} \times \Delta \overline{v}_{1/2} \qquad (11)$  where,  $\epsilon_{max}$  is the molar extinction coefficient and  $\Delta \overline{v}_{1/2}$  is half band width.

From these values the value of T2, T4 and T6 are calculated by using

$$\frac{P_{obs}}{v} = [(U^2)]^2 . T_2 + [(U^4)]^2 . T_4 + [(U^6)]^2 . T_6$$
(12)

### **RESULTS AND DISCUSSION**

Five transitions *i.e.*, <sup>4</sup>F<sub>3/2</sub>, <sup>4</sup>F<sub>5/2</sub>, <sup>4</sup>F<sub>7/2</sub>, <sup>4</sup>G<sub>5/2</sub> and <sup>4</sup>G<sub>7/2</sub> originating from symmetry forbidden <sup>4</sup>I<sub>9/2</sub> ground level in the 400-900 nm spectral region are observed in the neodymium complex. Out of the five transitions, the transition  ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2}$ 2 are very sensitive to the environment and are usually more intense when a lanthanide ion gets complexed than it is in the corresponding aquo ion. Such transitions are called hypersensitive transitions and follow a common set of selection rule  $|\Delta J| \le 2$ ,  $|\Delta L| \le 2$  and  $|\Delta S| = 0$ . In fact, the transitions  ${}^{4}I_{9/2}$  $\rightarrow$  <sup>4</sup>F<sub>3/2</sub>, <sup>4</sup>F<sub>5/2</sub>, <sup>4</sup>F<sub>7/2</sub> and <sup>4</sup>G<sub>7/2</sub> of Nd(III) do not obey the selection rules for hypersensitive transition<sup>18</sup>, but have been found to exhibit substantial sensitivity in the complexes<sup>19</sup>. Such ransitions are called "Ligand Mediated Pseudohypersensitive" or "Pseudohypersensitive" transitions. The comparative absorption spectra of Nd(III), Nd(III): L-leucine/L(-)-hydroxyproline/L(+)-arginine, Nd(III): L-leucine/L(-)-hydroxyproline/ L(+)-arginine: Ca(II) and Nd(III): L-leucine/L(-)-hydroxyproline/L(+)-arginine: Zn(II) in DMF is shown in Figs. 2-4. The addition of ligands i.e., L-leucine, L(-)-hydroxyproline and L(+)-arginine to Nd(III) results in the red shift in all the energy bands. Again, the addition of Ca(II) to Nd(III): ligand increases the wavelength further and the addition of Zn(II) to Nd(III): ligand shifts the energy bands to longer wavelength as compared to that of the increase in wavelength on addition of Ca(II) to Nd(III): ligand. From Table-1, one can observe that in all the systems that there is a slight decrease in Slater-Condon  $(F_K)$  and spin-orbit interaction or Lande's parameter  $(\xi_{4f})$  as the complexation goes on which lead to increase in the

values of nephelauxetic ratio when the ligands are added to Nd(III). Further, in all the systems, the values of nephelauxetic effect ( $\beta$ ) ranges from 1.0074-1.0305 and the bonding parameter  $(b^{1/2})$  values are found to be positive which indicates covalent bonding between the metal ion and the ligand. The small value and small variation of bonding parameter  $(b^{1/2})$ value are indicative of the fact that the 4f-orbitals of the metal ion are slightly involved in the formation of bonding between the metal ion and the ligand. It is in accordance with the theory for the origin and the intensity of  $f \leftrightarrow f$  transition reported earlier. The same trend is also observed in the case of other ligands *i.e.*, DL-valine, DL-alanine and B-alanine with Nd(III) in our previous work<sup>20</sup>. The corresponding values of oscillator strengths and Judd-Ofelt parameters of Nd(III) with different amino acids *i.e.*, L-leucine, L(-)-hydroxyproline and L(+)-arginine in presence and absence of Ca(II)/Zn(II) in the solvents methanol (CH<sub>3</sub>OH), acetonitrile (CH<sub>3</sub>CN), dimethylformamide (DMF) and dioxane (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) are shown in Table-2. From the Table-2, one can observe that the variation of solvent has significant effect on the oscillator strengths of 4f-4f bands and

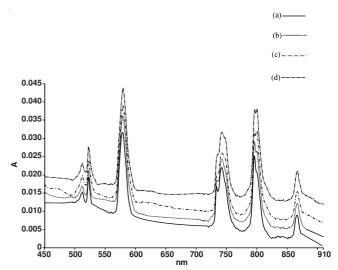



Fig. 2. Comparative absorption spectra of (a) Nd(III); (b) Nd(III): L-leucine; (c) Nd(III): L-leucine: Ca(III); (d) L-leucine: Zn(II) in DMF

TABLE-2

|                                                                                              |                               | RENT AQUATEI                        |                                     |                                  |                               | _                |        |                |
|----------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|-------------------------------------|----------------------------------|-------------------------------|------------------|--------|----------------|
| System                                                                                       | <sup>4</sup> F <sub>3/2</sub> | <sup>4</sup> F <sub>5/2</sub>       | <sup>4</sup> F <sub>7/2</sub>       | <sup>4</sup> G <sub>5/2</sub>    | <sup>4</sup> G <sub>7/2</sub> | - T <sub>2</sub> | $T_4$  | T <sub>6</sub> |
|                                                                                              | $P_{obs} (P_{cal})$           | $P_{_{obs}}\left(P_{_{cal}}\right)$ | $P_{obs}(P_{cal})$                  | $P_{obs} \left( P_{cal} \right)$ | $P_{obs}\left(P_{cal}\right)$ | -                |        |                |
|                                                                                              |                               |                                     | 1. Solvent-water                    |                                  |                               |                  |        |                |
|                                                                                              | 0.0050                        | 1 0005                              | L = L-Leucine                       | 2.02/2                           |                               |                  |        |                |
| Nd(III)                                                                                      | 0.3350<br>(0.3200)            | 1.9905                              | 2.4222<br>(2.2302)                  | 3.8265                           | 0.8203<br>(0.6506)            | 2.2054           | 0.2473 | 4.057          |
|                                                                                              | 0.3746                        | (2.0924)<br>2.2108                  | 2.6210                              | (3.8393)<br>3.8950               | 0.8372                        |                  |        |                |
| Nd(III): L                                                                                   | (0.3614)                      | (2.5438)                            | (2.5441)                            | (3.9056)                         | (0.6969)                      | 2.2020           | 0.3167 | 4.425          |
|                                                                                              | 0.3138                        | 2.0914                              | 2.3956                              | 3.3089                           | 0.6867                        |                  |        |                |
| Nd(III) : L: Ca(II)                                                                          | (0.3222)                      | (2.1221)                            | (2.3675)                            | (3.3153)                         | (0.6030)                      | 1.8683           | 0.2396 | 4.124          |
| $\mathbf{M}_{\mathbf{M}}(\mathbf{H})$ , $\mathbf{L}$ , $\mathbf{T}_{\mathbf{m}}(\mathbf{H})$ | 0.3289                        | 2.1605                              | 2.5025                              | 3.3566                           | 0.7133                        | 1 90/2           | 0.0275 | 4 201          |
| Nd(III): L: Zn(II)                                                                           | (0.3321)                      | (2.2043)                            | (2.4627)                            | (3.3640)                         | (0.6160)                      | 1.8942           | 0.2375 | 4.292          |
|                                                                                              |                               | L =                                 | L(-)-Hydroxypro                     | oline                            |                               |                  |        |                |
| Nd(III): L                                                                                   | 0.4136                        | 2.1234                              | 2.7111                              | 3.9128                           | 0.7966                        | 2.2638           | 0.2012 | 4.47           |
| Nu(111). L                                                                                   | (0.3341)                      | (2.2855)                            | (2.5966)                            | (3.9227)                         | (0.6678)                      | 2.2038           | 0.2012 | 4.47           |
| Nd(III): L : Ca(II)                                                                          | 0.3773                        | 2.2000                              | 2.7149                              | 3.5103                           | 0.7862                        | 2.0050           | 0.2047 | 4.54           |
|                                                                                              | (0.3394)                      | (2.3214)                            | (2.6060)                            | (3.5217)                         | (0.6350)                      | 2.0050           | 0.2047 | 1.51           |
| Nd(III): L : Zn(II)                                                                          | 0.3811                        | 2.2178                              | 2.7440                              | 3.6491                           | 0.8619                        | 2.0702           | 0.2515 | 2.57           |
|                                                                                              | (0.3535)                      | (2.3496)                            | (2.6736)                            | (3.6643)                         | (0.6633)                      |                  |        |                |
|                                                                                              | 0.2270                        |                                     | L = L(+)-Arginin                    |                                  | 0.6645                        |                  |        | ļ              |
| Nd(III): L                                                                                   | 0.3278<br>(0.3146)            | 1.9586                              | 2.2594<br>(2.2202)                  | 3.4233                           | 0.6645<br>(0.6080)            | 1.9346           | 0.2739 | 3.86           |
|                                                                                              | 0.3200                        | (2.0022)<br>1.9789                  | (2.2202)                            | (3.4276)<br>3.3519               | 0.6939                        |                  |        |                |
| Nd(III) : L : Ca(II)                                                                         | (0.3066)                      | (2.0456)                            | (2.2874)                            | (3.3597)                         | (0.5905)                      | 1.9138           | 0.2139 | 3.98           |
|                                                                                              | 0.3172                        | 1.9370                              | 2.2838                              | 3.2683                           | 0.6786                        |                  |        |                |
| Nd(III) : L: Zn(II)                                                                          | (0.2713)                      | (2.0567)                            | (2.3438)                            | (3.2784)                         | (0.5464)                      | 1.9271           | 0.0599 | 4.09           |
|                                                                                              | (*== + == + )                 |                                     | . Solvent - Metha                   |                                  | (0.0.101)                     |                  |        |                |
|                                                                                              |                               |                                     | L = L-Leucine                       | ·                                |                               |                  |        |                |
|                                                                                              | 0.4554                        | 1.9646                              | 2.6618                              | 4.1198                           | 0.7863                        |                  |        |                |
| Nd(III)                                                                                      | (0.3180)                      | (2.1906)                            | (2.4611)                            | (4.1283)                         | (0.6706)                      | 2.4047           | 0.1815 | 4.27           |
|                                                                                              | 0.4071                        | 1.9912                              | 2.6302                              | 4.0046                           | 0.7813                        | 0.0510           | 0 1205 | 4.07           |
| Nd(III): L                                                                                   | (0.3072)                      | (2.1896)                            | (2.4616)                            | (4.0148)                         | (0.6484)                      | 2.3512           | 0.1395 | 4.27           |
| Nd(III) : L :Ca(II)                                                                          | 0.4339                        | 2.1917                              | 2.7848                              | 4.2046                           | 0.9228                        | 2.3753           | 0.3580 | 4.53           |
| $Nu(III) \cdot L \cdot Ca(II)$                                                               | (0.3815)                      | (2.3739)                            | (2.6213)                            | (4.2227)                         | (0.7447)                      | 2.3733           | 0.5580 | 4.55           |
| Nd(III): L : Zn(II)                                                                          | 0.3844                        | 2.1750                              | 2.6210                              | 4.0684                           | 0.8117                        | 2.3269           | 0.2715 | 4.38           |
|                                                                                              | (0.3492)                      | (2.2745)                            | (2.5319)                            | (4.0770)                         | (0.6982)                      | 2.3207           | 0.2715 | ч.50           |
|                                                                                              |                               |                                     | L(-)-Hydroxypro                     |                                  |                               |                  |        |                |
| Nd(III): L                                                                                   | 0.3989                        | 1.9654                              | 2.6877                              | 3.9839                           | 0.8182                        | 2.3666           | 0.0755 | 4.32           |
| ((((())))))                                                                                  | (0.2938)                      | (2.1879)                            | (2.4892)                            | (3.9982)                         | (0.6316)                      | 2.0000           | 010700 |                |
| Nd(III): L : Ca(II)                                                                          | 0.3876                        | 2.0509                              | 2.7078                              | 3.9227                           | 0.9129                        | 2.2845           | 0.1873 | 4.38           |
|                                                                                              | (0.3267)                      | (2.2499)                            | (2.5292)                            | (3.1496)                         | (0.6621)                      |                  |        |                |
| Nd(III): L : Zn(II)                                                                          | 0.3881<br>(0.3245)            | 2.1100<br>(2.2908)                  | 2.7469<br>(2.5850)                  | 3.9903<br>(4.0061)               | 0.8710<br>(0.6644)            | 2.3369           | 0.1550 | 4.48           |
|                                                                                              | (0.3243)                      | . ,                                 | $\frac{(2.3830)}{L = L(+)-Arginin}$ | · /                              | (0.0044)                      |                  |        |                |
|                                                                                              | 0.4467                        | 2.0283                              | 2.6428                              | 4.2107                           | 0.8900                        |                  |        |                |
| Nd(III) : L                                                                                  | (0.3540)                      | (2.2272)                            | (2.4653)                            | (4.2236)                         | (0.7198)                      | 2.4108           | 0.3196 | 4.26           |
|                                                                                              | 0.4457                        | 2.0716                              | 2.7518                              | 4.1221                           | 0.8979                        |                  |        |                |
| Nd(III) : L : Ca(II)                                                                         | (0.3469)                      | (2.2909)                            | (2.5561)                            | (4.1370)                         | (0.7018)                      | 2.3792           | 0.2532 | 4.43           |
|                                                                                              | 0.4333                        | 2.0926                              | 2.6870                              | 4.1982                           | 0.9017                        |                  |        |                |
| Nd(III) : L: Zn(II)                                                                          | (0.3574)                      | (2.2757)                            | (2.5233)                            | (4.2119)                         | (0.7212)                      | 2.4054           | 0.3079 | 4.36           |
|                                                                                              | · /                           | · /                                 | Solvent - acetonit                  |                                  | , ,                           |                  |        |                |
|                                                                                              |                               |                                     | L = L-Leucine                       |                                  |                               |                  |        |                |
|                                                                                              | 0.5130                        | 1.9551                              | 2.5712                              | 3.8202                           | 0.6877                        | 0.1.420          | 0.2222 | 4.10           |
| Nd(III)                                                                                      | (0.3488)                      | (2.1642)                            | (2.3868)                            | (3.8210)                         | (0.6776)                      | 2.1439           | 0.3322 | 4.12           |
|                                                                                              | 0.4572                        | 1.9723                              | 2.5776                              | 3.8564                           | 0.6579                        | 2 2290           | 0.1016 | 4.10           |
| Nd(III): L                                                                                   | (0.3156)                      | (2.2539)                            | (2.4164)                            | (3.8573)                         | (0.6440)                      | 2.2289           | 0.1916 | 4.19           |
| Nd(III) : L :Ca(II)                                                                          | 0.4171                        | 2.0901                              | 2.6892                              | 3.9166                           | 0.7668                        | 2.2714           | 0.1752 | 4.41           |
| $\operatorname{vu}(\operatorname{III})$ . L. Ca(II)                                          | (0.3249)                      | (2.2584)                            | (2.5395)                            | (3.9249)                         | (0.6575)                      | 2.2714           | 0.1732 | 4.41           |
| Nd(III): L : Zn(II)                                                                          | 0.3850                        | 2.0116                              | 2.6133                              | 3.6272                           | 0.7212                        | 2.1226           | 0.1044 | 4.29           |
| $(\mathbf{m})$ , $\mathbf{n}$ , $\mathbf{n}$                                                 | (0.2985)                      | (2.1769)                            | (2.4662)                            | (3.6361)                         | (0.6036)                      | 2.1220           | 0.1044 | т.29           |

| $\begin{split} & \text{Nel(III): L} & 0.4550 & 2.0642 & 2.577 & 3.9016 & 0.7924 & 2.180 & 0.3701 & 4.2183 \\ & 0.3701 & 0.4214 & 2.0948 & 2.6402 & 3.8286 & 0.8194 \\ & 0.4021 & 2.0948 & 2.6402 & 3.8286 & 0.8194 \\ & 0.3606 & (2.2461) & (2.5496) & (3.8402) & 0.6676 & 2.1854 & 0.2782 & 4.356 \\ & 0.4714 & (2.575) & (2.5701) & (3.2956) & (0.6742) & 2.1662 & 0.2782 & 4.360 \\ \hline & 0.4714 & (2.575) & (2.5701) & (3.2957) & (0.6742) & 2.1662 & 0.2782 & 4.360 \\ \hline & 0.4714 & (2.577) & 2.5174 & 4.144 & 0.3324 & 0.3794 & 0.3704 & 4.2561 & 0.9096 & 0.4155 & 4.0671 \\ \hline & 0.4714 & (1.9773) & 2.5174 & 4.144 & 0.3784 & 0.3794 & 0.3704 & 4.2561 & 0.9096 & 0.4155 & 4.0671 \\ \hline & 0.4714 & (1.9773) & 2.5174 & 4.144 & 0.3784 & 0.3794 & 0.3704 & 4.2561 & 0.9096 & 0.4155 & 4.0671 & 0.3560 & 0.2652 & 2.5568 & 4.0238 & 0.7995 & 2.3983 & 0.3566 & 4.4160 & 0.07038 & 2.0758 & 0.3704 & 4.2561 & 0.9096 & 0.3704 & 4.2561 & 0.7038 & 2.775 & 0.3104 & 4.2561 & 0.7038 & 2.775 & 0.3104 & 4.2561 & 0.7038 & 2.6395 & 0.5128 & 4.2185 & 0.4012 & 0.7038 & 2.6395 & 0.5128 & 4.2195 & 0.5128 & 4.2195 & 0.5128 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 4.2195 & 0.5512 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5128 & 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |           | L=        | = L(-)-Hydroxypro | oline    |                                       |         |         |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|-----------|-------------------|----------|---------------------------------------|---------|---------|-----------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III)· I                                                                       | 0.4550    | 2.0642    | 2.5777            | 3.9616   |                                       | 2 2180  | 0 3701  | 4 2183    |
| Salling E. (Salli)         (0.3406)         (2.2641)         (2.2849)         (0.8402)         (0.677)         2.1680         0.2305         4.3430           Nd(III): L. (Zuff)         (0.3474)         (2.255)         (2.5021)         (3.8295)         (0.6742)         2.1660         0.2782         4.3360           Nd(III): L. (Zuff)         (0.3671)         (2.1537)         2.5174         (0.3283)         2.3206         0.4155         4.0671           Nd(III): L. (Cuff)         (0.4334         2.1537)         2.6044         4.2361         0.07987         2.3983         0.3666         4.4116           Nd(III): L. (Zuff)         (0.4334         2.1537)         2.6044         4.2361         0.0799         2.5788         0.4038         4.2082           VIIII): L. (Zuff)         (0.3205)         1.7538         2.6013         3.8336         0.4432         2.5788         0.1512         4.2495           Nd(III): L. (Zuff)         (0.3275)         (1.9725)         C.4082)         0.4334         0.5128         4.2495           Nd(III): L. Ca(III)         (0.3502)         (2.2681)         (2.4175)         (1.231)         0.5652         2.5758         0.1791         4.339           Nd(III): L. Ca(III)         (0.3502)         (2.44877)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nu(III). L                                                                       | · · · · · |           | · · · ·           | . ,      |                                       | 2.2100  | 0.5701  | 4.2105    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L : Ca(II)                                                              |           |           |                   |          |                                       | 2.1854  | 0.2505  | 4.3435    |
| Natlini         (0.3474)         (0.3474)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)         (0.742)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd(III): L : Zn(II)                                                              |           |           |                   |          |                                       | 2.1662  | 0.2782  | 4.3360    |
| $ \begin{array}{l c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | (0.3474)  |           |                   |          | (0.0742)                              |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | 0.4741    |           | -                 |          | 0.8284                                |         |         |           |
| Nd(III) : L: Ca(II)         0.4334<br>(7372)<br>(0.3760)         2.1537<br>(2.0432)         2.6949<br>(2.4322)         4.2364<br>(4.0311)         0.9096<br>(0.708)         2.2982<br>(2.726)         0.3606         4.416           Nd(III) : L: Za(II)         0.4308<br>(0.3560)         2.0652<br>(2.023)         2.5568<br>(4.0231)         4.0280<br>(0.0318)         0.7996<br>(0.038)         2.2736         0.3402         4.2082           L = L-Leucine           L = L-Leucine           U = L-Leucine           0.43304         2.6613         3.8336         0.4432         2.5394         0.5128         4.2495           Nd(III) : L (Ca(II)         0.3065         1.7538         2.6614         4.1231         0.0551         2.5788         0.1719         4.2334           Nd(III) : L (Ca(II)         0.3665         2.1151         2.6740         4.47970         0.6762         2.699         0.255         4.3492           Nd(III) : L (Ca(II)         0.3402         (2.2081)         (2.4483         0.4418         0.6762         2.699         0.255         4.3145           Nd(III) : L (Ca(II)         0.3402         (2.2309         2.7412         4.4180         0.6122         7.4488         0.1542         4.5095           Nd(III) : L (Ca(II) <td>Nd(III): L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.3206</td> <td>0.4155</td> <td>4.0671</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nd(III): L                                                                       |           |           |                   |          |                                       | 2.3206  | 0.4155  | 4.0671    |
| Nollini Li Callini         (0.3722)         (2.3120)         (2.5498)         (4.2490)         (0.7399)         2.5983         0.5960         4.416           Nd(III) : Li Za(II)         (0.3560)         (2.2053)         (2.4322)         (4.0311)         (0.7038)         2.776         0.3403         4.2082           L=Lelaccine           L=Lelaccine           Nd(III)         (0.3765)         1.7538         2.6013         3.3336         0.4432         2.594         0.5128         4.2495           Nd(III): L         (0.3676         1.8934         2.5664         4.1233         0.5562         2.578         0.1791         4.2334           Nd(III): L. Ca(II)         (0.4502)         (2.2681)         (2.4175)         (4.1231)         (0.5651)         2.578         0.1791         4.2334           Nd(III): L. Ca(II)         (0.4522)         2.0761         2.6179         4.4180         (0.7682)         2.5659         0.255         4.3145           Nd(III): L. Ca(II)         (0.422)         2.0477         2.759         4.4280         (0.672)         2.488         0.1542         4.5695           Nd(III): L. Ca(II)         (0.3402)         (2.379)         (2.612)         (4.198)         (0.3103) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III) : L : Ca(II)                                                             |           |           |                   |          |                                       | 2.3983  | 0.3566  | 4.4116    |
| $\begin{split} & \text{Na}(\text{III}): 1: 2\mu(\text{III}) & (0.3560) & (2.2053) & (2.4322) & (4.0311) & (0.7038) & 2.738 & 0.5403 & 4.2482 \\ & - & - & - & - & - & - & - & - & - &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   |          | · · · · · · · · · · · · · · · · · · · | 0.0706  | 0.2402  | 4 0000    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nd(III): L: $Zn(II)$                                                             |           |           |                   |          |                                       | 2.2736  | 0.3403  | 4.2082    |
| $ \begin{split} & \text{Nd(III)} & \begin{array}{c} 0.3085 & 1.7538 & 2.6013 & 3.8336 & 0.4428 \\ 0.1323) & (1.9725) & (2.4082) & (3.8336) & 0.4428 \\ 0.4428) & 2.5594 & -0.5128 & 4.2495 \\ 0.0199 & (2.0626) & (2.4175) & (4.1231) & (0.5611) \\ 0.02199 & (2.0626) & (2.4175) & (4.1231) & (0.5611) \\ 0.0501) & (0.3602) & (2.2681) & (2.5191) & (4.5813) & (0.7470) \\ 0.0402) & (2.2081) & (2.5191) & (4.5813) & (0.7470) \\ 0.0402) & (2.2080) & (2.4885) & (4.4192) & (0.7263) & 0.2727 & 4.3992 \\ 0.04101 & (.7040) & (0.3402) & (2.2080) & (2.4885) & (4.4192) & (0.7243) & (2.5593) & 0.2727 & 4.3992 \\ 0.04101 & (.7040) & (0.3402) & (2.2080) & (2.4885) & (4.4192) & (0.7243) & (2.5593) & 0.2753 & 4.3145 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |           |           | 4. Solvent – DM   | F        |                                       |         |         |           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |           |           | L = L-Leucine     |          |                                       |         |         |           |
| $\begin{split} & (1125) & (11725) & (2.4082) & (3.8336) & (0.4429) \\ & (0.2198) & (2.0626) & (2.4175) & (4.1231) & (0.5362) & 2.5758 & -0.1791 & 4.2334 \\ & (0.2198) & (2.0626) & (2.4175) & (4.1231) & (0.5762) & 2.6593 & 0.2727 & 4.3992 \\ & (0.4101) : L : Ca(II) & (0.4422 & 2.0681) & (2.5191) & (4.5813) & (0.7470) & 2.6593 & 0.2727 & 4.3992 \\ & (0.4422 & 2.2081) & (2.5191) & (4.5813) & (0.7470) & 0.7223 & 0.555 & 4.3145 \\ & (0.3402) & (2.2208) & (2.4182) & (0.7223) & (0.7223) & 0.555 & 4.3145 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N 1/111)                                                                         | 0.3085    | 1.7538    | 2.6013            | 3.8336   | 0.4432                                | 0.5204  | 0.5100  | 4.0405    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nd(111)                                                                          | (0.1323)  | (1.9725)  | (2.4082)          | (3.8336) | (0.4428)                              | 2.5394  | -0.5128 | 4.2495    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NJ/III), I                                                                       | 0.3676    | 1.8934    | 2.5664            | 4.1253   | 0.5362                                | 2 5750  | 0.1701  | 1 2224    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(111): L                                                                       | (0.2198)  | (2.0626)  | (2.4175)          | (4.1231) | (0.5651)                              | 2.3738  | -0.1791 | 4.2334    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III) · L ·Ca(II)                                                              |           |           |                   |          |                                       | 2 6503  | 0.2727  | 4 3002    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Nu(III) \cdot L \cdot Ca(II)$                                                   | · · · · · | (2.2681)  | (2.5191)          | (4.5813) | (0.7470)                              | 2.0393  | 0.2727  | 4.3992    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Nd(III) \cdot I \cdot Zn(II)$                                                   |           |           |                   |          |                                       | 2 5659  | 0 2555  | 4 3145    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | (0.3402)  |           |                   |          | (0.7223)                              | 2.3037  | 0.2555  | 4.5145    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           | = L(-)-Hydroxypro |          |                                       |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L                                                                       |           |           |                   |          |                                       | 2.7488  | -0.1542 | 4.5695    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1(0(11)) 2                                                                       |           |           |                   |          |                                       | 2.7.100 | 0110.2  |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L : Ca(II)                                                              |           |           |                   |          |                                       | 2.7205  | 0.4667  | 4.5041    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L : Zn(II)                                                              |           |           |                   |          |                                       | 2.6097  | 0.3465  | 4.2796    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | (0.3622)  |           | × /               |          | (0.7589)                              |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III) : L                                                                      |           |           |                   |          |                                       | 5.7779  | 1.3371  | 9.0461    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |           |           | · · · · ·         |          |                                       |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III) : L : Ca(II)                                                             |           |           |                   |          |                                       | 6.2497  | -0.6412 | 9.1303    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | · · · · · |           |                   |          |                                       |         |         |           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nd(III) : L: Zn(II)                                                              |           |           |                   |          |                                       | 5.9821  | -0.8098 | 8.7884    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | (0.3398)  |           |                   |          | (0.7831)                              |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   | lic      |                                       |         |         |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | 0.4080    | 1 8472    |                   | 2 6920   | 0.6071                                |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III)                                                                          |           |           |                   |          |                                       | 2.2146  | -0.0047 | 4.1835    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | · · · · · | · · · · · |                   |          | · · · · ·                             |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L                                                                       |           |           |                   |          |                                       | 2.2836  | 0.2348  | 4.3006    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III) : L :Ca(II)                                                              |           |           |                   |          |                                       | 2.1856  | 0.2224  | 4.2391    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           |                   |          |                                       |         |         |           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nd(III): L : Zn(II)                                                              |           |           |                   |          |                                       | 2.1251  | 0.3057  | 4.3694    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | · · ·     |           | = L(-)-Hydroxypro |          |                                       |         |         |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | 0.4386    |           |                   |          | 0.6823                                |         | 0.0000  |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L                                                                       | (0.2984)  |           | (2.4973)          |          | (0.6182)                              | 2.2358  | 0.0908  | 4.3452    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | 0.3863    | 1.9431    | 2.4730            |          | 0.6588                                | 2.1434  | 0.1403  | 4.0829    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nd(III): L: Ca(II)                                                               | (0.2949)  | (2.0824)  | (2.3495)          | (3.6795) | (0.6065)                              |         |         |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $NJ(III), I = 7\pi(II)$                                                          | 0.4313    | 1.9976    | 2.5271            | 3.8720   | 0.8207                                | 0 1776  | 0 2492  | 4 1 1 7 7 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd(III): L : Zn(II)                                                              |           |           | (2.3809)          |          | (0.6871)                              | 2.1776  | 0.3483  | 4.11//    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |           |           | L = L(+)-Arginin  | e        |                                       |         |         |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NJ(III) . I                                                                      | 0.3912    |           | -                 |          | 0.8154                                | 0.0707  | 0.0002  | 4.0000    |
| Nd(III): L: Ca(II) $(0.3424)$ $(2.1663)$ $(2.3993)$ $(4.1561)$ $(0.7016)$ $2.3754$ $0.3024$ $4.1544$ Nd(III): L: Zn(II) $0.3914$ $1.9024$ $2.5193$ $3.9062$ $0.8579$ $2.3021$ $0.2174$ $4.0676$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\operatorname{INd}(\operatorname{III})$ : L                                     |           |           |                   |          |                                       | 2.3727  | 0.0893  | 4.2396    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Nd(III) \cdot I \cdot Co(II)$                                                   | 0.4370    | 1.9540    | 2.5889            | 4.1415   | 0.8941                                | 2 2754  | 0.2024  | 1 1544    |
| $N_{1}(11) \cdot 1 \cdot Z_{1}(11) = \frac{1}{1} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{1} \frac{1}{4} $ | $\operatorname{Nu}(\operatorname{III}): L: \operatorname{Ca}(\operatorname{II})$ |           | (2.1663)  |                   |          | (0.7016)                              | 2.3754  | 0.3024  | 4.1544    |
| (0.3143) (2.0977) (2.3447) (3.9715) (0.6556) (0.6556) (0.2174) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Nd(III) \cdot I \cdot Zn(II)$                                                   |           | 1.9024    | 2.5193            |          | 0.8579                                | 2 3021  | 0.2174  | 4 0676    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (III) . L. ZII(II)                                                               | (0.3143)  | (2.0977)  | (2.3447)          | (3.9715) | (0.6556)                              | 2.3021  | 0.2174  | 4.0070    |

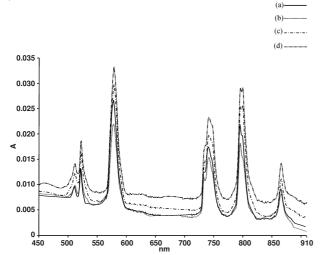



Fig. 3. Comparative absorption spectra of (a) Nd(III); (b) Nd(III): L(-)hydroxyproline; (c) Nd(III): L(-)-hydroxyproline: Ca(II); (d) Nd(III): L(-)-hydroxyproline: Zn(II) in DMF

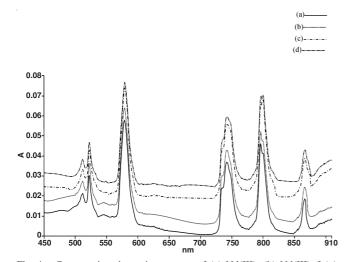



Fig. 4. Comparative absorption spectra of (a) Nd(III); (b) Nd(III); L(+)arginine; (c) Nd(III): L(+)-arginine: Ca(II); (d) Nd(III): L(+)arginine: Zn(II) in DMF

this leads to variation in the magnitudes of Judd-Ofelt ( $(T_{\lambda})$ parameters. The oscillator strength values of hypersensitive and pseudohypersensitive transitions are found to be highest in acetonitrile (CH<sub>3</sub>CN) and dimethylformamide (DMF). Different band shapes for the hypersensitive and Pseudohypersensitive transitions have been observed in different solvents *i.e.*, methanol (CH<sub>3</sub>OH), acetonitrile (CH<sub>3</sub>CN), dimethylformamide (DMF) and dioxane (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) medium relative to the complex Nd(III): L-leucine. The intensification of the 4f-4f bands is maximum in DMF medium for all the ligands. This is because when DMF coordinates to hard acids like lanthanide ions, it generally binds through oxygen and not nitrogen. This shows that oxygen has a stronger binding capacity than nitrogen. Acetonitrile (CH<sub>3</sub>CN) binds through nitrogen whereas methanol is a very weak donor which in some cases does coordinate and otherwise not.

Karraker<sup>21,22</sup> compared the spectra of several Nd(III) complexes of different coordination numbers with the spectra of complexes having known structures. He pointed out that the shape, energy and oscillator strength of the hypersensitive transition can be correlated with the coordination number of

neodymium in the complex species. Misra<sup>23</sup> has observed that intensification of the hypersensitive band is generally accompanied by a lowering in coordination of lanthanide and a greater involvement of metal 4*f*-orbitals in their bonding in the ligating atom. The intensification of 4*f*-4*f* band specially hypersensitive and peudohypersensitive transitions are reflected in the magnitude of  $T_{\lambda}$  ( $\lambda = 2, 4, 6$ ) parameters. Intensification of the bands is due to the introduction of covalency in the metal-ligand bond as the oscillator strength of intra 4*f*-4*f* transitions and magnitude of  $T_{\lambda}$  increase with the increase in the nephelauxetic effect.

When Nd(III) is added to different ligands *i.e.*, L-leucine, L(-)-hydroxyproline and L(+)-arginine in DMF medium, it has been found that the sensitivity of the binding of different ligands to Nd(III) are in the order L(+)-arginine > L(-)-hydroxyproline > L-leucine. This sensitivity of the binding of different ligands to Nd(III) is shown in Fig. 5.

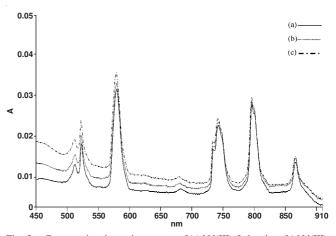



Fig. 5. Comparative absorption spectra of (a) Nd(III): L-leucine; (b) Nd(III): L(-)-hydroxyproline; (c) Nd(III): L(+)-arginine in DMF

#### Conclusion

From the above investigation it has been observed that the 4f-4f transition of Nd(III) can be used to investigate the nature of binding of some biologically important amino acid ligands. There is expansion of the central metal ion orbital when amino acids are added to Nd(III) and also on further addition of Ca(II) and Zn(II). This information is supported by the decrease in the values of inter-electronic repulsion parameter, Slater-Condon parameter  $(F_K)$  and spin-orbit coupling constant ( $\xi_{4f}$ ) and increase in the value of nephelauxetic ratio  $(\beta)$ . There is lowering of coordination number and shortening of metal-ligand distance when the Ln(III) is coordinated with amino acid ligands in the absence and presence of Ca(II)/ Zn(II). Same changes is also observed in intensity parametersoscillator strength (P) and Judd-Ofelt parameter,  $T_{\lambda}$  ( $\lambda = 2, 4, 4$ ) 6). From the study of interaction of Nd(III) with some biologically important amino acid ligands, it is observed that the variation of solvent has significant effect on the oscillator strength (P) and Judd-Ofelt parameter,  $T_{\lambda}$  ( $\lambda = 2, 4, 6$ ). Among the solvents used, dimethylformamide (DMF) is the most favored solvent as maximum intensification is observed in this particular solvent. It is also observed that the sensitivity of the binding of some biologically important amino acid ligands to

Nd(III) is in the order L(+)-arginine > L(-)-hydroxyproline > L-leucine.

## ACKNOWLEDGEMENTS

One of the authors, H. Debecca Devi is thankful to CSIR, New Delhi, for providing financial support.

# REFERENCES

- 1. C.H. Evans, Biochemistry of Lanthanides, Plenum Press, Ch. 2, p. 3, (1990).
- 2. A. Aziz, S.J. Lyle and J.E. Newbery, *J. Inorg. Nucl. Chem.*, **33**, 1975 (1979).
- 3. A.D. Sherry, C. Yoshida, E.R. Birnbaum and D.W. Darnall, *J. Am. Chem. Soc.*, **95**, 3011 (1973).
- J. Legendziewicz, E. Huskowska, G.Y. Argay and A. Waskowska, *Inorg. Chem., Acta*, 95, 57 (1984).
- 5. K.J. Shah and M.K. Shah, Bull. Pure Appl. Sci., 20C, 81 (2001).
- H.D. Devi, Th.D. Singh, N. Yaiphaba, Ch. Sumitra, M. Indira Devi and N. Rajmuhon Singh, *Asian J. Chem.*, 16, 412 (2004).
- 7. E.Y. Wong, J. Chem. Phys., 35, 544 (1961).

- 8. E.Y. Wong, J. Chem. Phys., 38, 976 (1963).
- 9. R.D. Peacock, Chem. Phys., 8, 281 (1964).
- 10. C.K. Jorgensen and B.R. Judd, Mol. Phys., 8, 281 (1964).
- D.E. Henrie, R.L. Fellow and G.R. Choppin, *Coord. Chem. Rev.*, 18, 429 (1976).
- 12. S.P. Sinha and H.H. Schmidtke, Mol. Phys., 38, 2190 (1965).
- 13. S.P. Sinha, Spectrochim. Acta, 22, 57 (1966).
- 14. S.P. Sinha, P.C. Mehta and S.S.L. Surana, Mol. Phys., 23, 807 (1972).
- S.U. Condon and G.H. Shortley, Theory of Atomic Spectra, Cambridge University Press (1963).
- 16. B.R. Judd, Phys. Rev., 127, 750 (1962).
- 17. G.S. Ofelt, Phys. Rev., 37, 571 (1962).
- S.N. Misra, M. Indira Devi, C.M. Suveerkumar and S.K. Mathew, *Rev. Inorg. Chem.*, 14, 347 (1994).
- W.T. Carnall, P.R. Fields and B.G. Wybourne, J. Chem. Phys., 42, 3797 (1965).
- H.D. Devi, Ch. Sumitra, Th. D. Singh, N. Yaiphaba, N.M. Singh and N.R. Singh, *Internat. J. Spectrosc.*, Article ID 784305 (2009).
- 21. D.G. Karraker, J. Inorg. Nucl. Chem., 31, 2851 (1969).
- 22. D.G. Karraker, J. Inorg. Nucl. Chem., 33, 3713 (1971).
- 23. S.N. Misra, J. Scient. Ind. Res., 44, 366 (1985).