
INTRODUCTION

Local methods were applied in chemometrics, in which

variant sample-dependent models are constructed by the

sample subset selected from large calibration samples set for

each predicted sample1,2. The calibration subset selection

depends on location of the unknown sample in the calibration

domain, that is to say, selection of calibration sample subset

by definite "similarity criteria" between calibration samples

and unknown sample. In local methods, Variant "distance" rules

is usually used as similarity criteria, including Euclidean

distance3,4, Mahalanobis distance5, Manhattan distance and

Minkowski distance in spectra space or principal component

(PC) space.

Topological methods including k-nearest neighbors (kNN)

method6, multi-dimensional simplex interpolation (MSI)7, the

law of mixtures (LM)8 method and delaunay triangulation

(DT)9, etc., is another type of local method, which acquires

calibration samples whose property values, e.g., concentrations

are close to the predicted sample by topological technology

and predict sample directly not in need of constructing

calibration models. Along with developments of computer

technology and computer graphics, delaunay triangulation

method has been one of the most popular methods of full-

automatic "high grade" meshes generation. It is an important

pre-treatment method to numerical analysis or Graph theory.

The delaunay triangulation has been widely used in many fields

such as statistics, solid state physics, computational geometry,
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etc.10-12 and a few papers have been reported in quantitative

analysis of near infrared spectroscopy for the present9,13,14.

Selection of calibration sample subset is the core of local

method. In this work, delaunay triangulation local method

builds a lattice in principal component space by principal

component analysis15,16. The prediction of unknown object is

calculated with the calibration samples constructing the

surrounding or enclosing simplex for each point (object). In

calculation procedure, Euclidean distances between them were

evaluated as weighted values. Simultaneously, the closest

points immediately chosen through Euclidean distances in

principal component space between samples were investigated,

which got worse results than delaunay triangulation method.

At last, compared with global PLS17 method, prediction results

are improved significantly in analysis of complex plant samples

by near infrared.

Theory and algorithm

Principal component analysis (PCA): When large multi-

variate datasets are analyzed, it is often desirable to reduce

their dimensionality. Principal component analysis is one

technique for doing this. Its goal is to extract the important

information from the datasets, to represent it as a set of new

orthogonal variables called principal components (PCs). The

mathe-matical formula of principal component analysis can

be expressed as follows:
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where Xn×p is the matrix of response variables, Tn×f and Pf×p are

the score and loading vectors, respectively. n is the number of

samples, p is the number of variables and f is the number of

principal components.

Delaunay triangulation (DT) local method: Delaunay

triangulation is one of the most popular methods for gene-

ration of unstructured meshes. It originates from the study of

structures in computational geometry and can generate "high

grade" meshes quickly. Mesh partitioning is a key step in the

pre-treatment of finite element analysis. Delaunay triangu-

lation has two important restrictions, namely, maximum and

minimum angle criterion and circle criterion, which ensure

that the simplex surrounding the point is "good". The detail

steps to construct delaunay triangulation mesh can refer to

literature14.

General procedure: According to each individual unknown

sample situated in the delaunay triangulation mesh, its calibra-

tion subsets are chosen from the whole calibration data sets.

Then calculate the content of unknown sample by using content

of the selected subsets. The detailed procedures can be described

as follows: (1) The near infrared spectral data are randomly

divided into a calibration set, an assessing set and a prediction

set. (2) At number of principal component nf, scoring matrix T

of calibration set and assessing set are obtained, respectively

by using principal component analysis, then delaunay triangu-

lation mesh is constructed by calibration set in f-dimensional

space and assessing set are cast in this space. (3) In f-dimension

space, if an unknown sample M falls within a simplex defined

by f + 1 neighbor samples (M1, M2, …, Mf+1), its associated

property can be calculated through the properties of f + 1

neighbours according to the following equations:
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where, 
1fiMiM t,,t

+

…  are the scores of the objects in the

projected principal component-space and 
1f1 iMM t,,d

+

…  are

the Euclidean distances between unknown object and its

neighbours. D is the summation of f + 1 distance.

1f1 MM ,,
+

α…α  are the contributions of samples M1, …, Mf+1,

individually, which is inverse ratio to the distances between

itself and the unknown object. Then the property of an un-

known sample can calculated as follows:
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where 
1f1 MMM y,,y,y

+

…  are the property of calibration

subset samples M, M1, …, Mf+1, respectively. By using above

formulation, predict every sample in the assessing set one by

one. (4) In f-dimension space, if an unknown sample M falls

outlier of the whole DT mesh, f + 1 neighbor samples with the

shortest distance are used. As well, according to eqn. 8 calculate

its content. (5) At optimum number of principal components

decided by assessing set, predict the samples in prediction set

with the same procedures.

EXPERIMENTAL

Data set consists of 80 samples of corn measured on 3

different near infrared spectrometers. (Provided by http://

software.eigenvector.com/Data/Corn/index.html). The wave-

length range is 1100-2498 nm at 2 nm intervals (700 channels).

Moisture, oil, protein and starch components of the corn

samples are predicted.

Eighty samples (or spectra) were arbitrarily divided into

3 sets. 48 samples were used for calibration data set, 16 samples

were used for validation data set and the remaining 16 samples

were used as prediction data set. In optimization of procedure

parameters, the root mean squared error of prediction (RMSEP)

of assessing set is used as evaluation criterion.
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n

1
RMSEP












−= ∑

=

(8)

where iŷ  is the prediction concentration of the ith sample, yi

is the true concentration of the ith sample, n is the number of

prediction samples.

RESULTS AND DISCUSSION

Determination of number of principal components: To

determine the optimal number of principal components (nf),

RMSEP of assessing set at different nf were given in the Table-

1. It is shown that RMSEP almost decreased with the increase

of nf, so nf = 4 is chosen as the optimal number of principal

components. Take 3 dimensions for example, the distributions

of samples projected to principal component-space are shown

in Fig. 1. The delaunay triangulation-meshes are constructed

by training set and the points indicate the assessing set.

TABLE-1 

PREDICTION RESULTS OF ACCESSING SET BY  
DELAUNAY TRIANGULATION AT DIFFERENT  

NUMBER OF PRINCIPAL COMPONENTS (nf) 

Components Number of principal components RMSEP 

2 0.39 

3 0.30 Moisture 

4 0.21 

2 0.21 

3 0.24 Oil 

4 0.16 

2 0.62 

3 0.46 Proteins 

4 0.28 

2 1.15 

3 0.77 Starch 

4 0.60 

 
Prediction results of prediction set: At nf = 4, prediction

results of the prediction set by delaunay triangulation
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Fig. 1. Distributions of the samples projected to principal component-space

of 3 dimensions

method were list in Table-2. At the same time, the prediction

results by local method which selects nf+1 closest points

(samples) of training sets to unknown object through imme-

diately Euclidean distances between them in principal

component space were also investigated. Global PLS method

(nf = 13) was also used to predict the same prediction set.

From Table-2, it can be concluded that the proposed

delaunay triangulation method performs better than local

method. It indicates that in principal component-space, concen-

trations of the calibration samples constructing the surrounding

or enclosing simplex are closer than the closest calibration

samples to each point. So it may be interpreted that delaunay

triangulation mesh could establish more accurate intrinsic

correlation between spectral data and properties data than

"distance" in principal component-space, as a result, adjacency

of spectra values between different samples according with

adjacency of concentration values more exactly in delaunay

triangulation method. Then compared with PLS method,

delaunay triangulation get better results at small number of

principal components (low dimensions), furthermore, it need

not constructing a calibration model, which is more simple

and quick, avoiding redundant interferences.

Conclusion

The proposed delaunay triangulation local method gets

better prediction results with few principal components

compared with local method and global PLS method in

prediction of components of corn. It can be concluded that in

principal component-space, delaunay triangulation mesh could

reflect accurate intrinsic relationship in terms of spectra and

concentrations, etc., between samples of different properties.

Therefore, the proposed delaunay triangulation method may

be an effective tool for quantitative analysis of complex

samples in near infrared spectra.
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TABLE-2 

PREDICTION RESULTS OF PREDICTION SET BY DELAUNAY TRIANGULATION, LOCAL METHOD AND PLS METHODS 

Components/methods Delaunay triangulation Local method PLS 

RMSEP 0.19 0.37 0.42 
Moisture 

Recovery (%) 102.08-96.70 93.97-105.52 112.83-94.58 

RMSEP 0.17 0.17 0.18 
Oil 

Recovery (%) 107.95-91.38 90.42-105.00 92.56-113.04 

RMSEP 0.28 0.40 0.32 
Proteins 

Recovery (%) 106.92-93.93 108.50-90.51 110.55- 95.09 

RMSEP 0.57 0.75 0.89 
Starch 

Recovery (%) 102.01-99.06 102.79-98.11 103.83-98.20 
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