

Structure Elucidation of Two Unknown Oxydic Degradation Impurities of Rifaximin

CHAO LIU^{1,2}, CHANG-QIN HU² and SHAO-HONG JIN^{2,*}

¹China Pharmaceutical University, Nanjing 210009, Jiangsu Province, P.R. China ²National Institute for the Control of Pharmaceutical and Biological Products, Beijing 100050, P.R. China

*Corresponding author: Tel: +86 10 67095258; E-mail: jinshh@nicpbp.org.cn

(Received: 20 December 2010;

Accepted: 24 March 2011)

AJC-9774

Rifaximin is a semi-synthetic rifamycin derivate. Two unknown oxydic degradation impurities (impurity 1 and impurity 2) were prepared from rifaximin based on the degradation mechanism by using manganese dioxide as the oxidant. The structure of the impurities was elucidated by using MS and other modern spectroscopic (NMR and FTIR) techniques and as (2S,20S,21S,22R,23R,24R,25S,26R,27S)-6,21,23-trihydroxy-27-methoxy-2,4,16,20,22,24,26-heptamethyl-11-methylene-1,5,15-trioxo-1,2,5,11-tetrahydro-2,7-(epoxypentadeca[1,11,13]trienoimino)furo[2",3":7',8']naphtho[1',2':4,5]imidazo[1,2-a]pyridin-25-yl-acetate and (2S,20S,21S, 22R,23R,24R,25S,26R,27S)-5,21,23-trihydroxy-27-methoxy-2,4,16,20,22,24,26-heptamethyl-11-methylene-1,6,15-trioxo-1,2,6,11-tetrahydro-2,7-(epoxypentadeca[1,11,13]trienoimino)furo[2",3":7',8']naphtho[1',2':4,5]imidazo[1,2-a]pyridin-25-yl-acetate by IUPAC.

Key Words: Rifaximin structure, Impurity, Antibiotic.

INTRODUCTION

Rifaximin is a semi-synthetic rifamycin derivate and it has been clinically used for the treatments of enterocolitis, travel diarrhea and hepatic coma¹⁻⁴. High performance liquid chromatographic (HPLC) methods have been reported in the literature for the determination of rifaximin in pharmacokinetic research⁵⁻⁷ and for quality control⁸⁻¹⁰. Eight impurities of rifaximin (impurity A to impurity H) from rifaximin industrial process have been listed in European/British pharmacopoeia^{11,12} and the erroneous structure of impurity H in European Pharmacopoeia 6.5 (2009) was corrected which was reported in the cited literature¹³.

The HPLC analysis of rifaximin bulk drug has been performed as per the method described in HPLC of the materials and procedures. During this analysis of different batches of rifaximin, two unknown impurities have been detected whose area percentage ranged up to 0.1 % sometimes and have a close relation with an oxydic degradation pathway. Organic impurities can arise during the manufacturing process and storage of the drug substance and criteria for their acceptance upto certain limits are based on pharmaceutical studies, clinical trials or known safety data. As per regulatory guideline, the pharmaceutical studies using the sample of the isolated impurity can be considered for safety assessment¹⁴. Therefore, it is essential to isolate and characterize the unidentified impurities present in active pharmaceutical ingredients (APIs). This paper aims for the preparation and structure elucidation of the two potential impurities.

EXPERIMENTAL

All reagents and spectroscopic solvents pure grade employed for high performance liquid chromatography and LC/MS were of HPLC grade. The samples of rifaximin were obtained from NICPBP (National Institute for the Control of Pharmaceutical and Biological Products) in China.

Preparation of impurity 1 and impurity 2: Fist, in a 250 mL four-necked flask, 12 g rifaximin was stirred and dissolved by 72 mL chloroform. Then 10 g manganese dioxide was added. Subsequently, it was stirred until no spot of the rifaximin was found in the thin-layer chromatography plate with the mobile phase of dichloromethane:ethylbutyl acetate: methanol:ammonia water (4:2:1:2 drops). And in the reaction process, 2.5 g manganese dioxide was added. After 18 h, the reaction was stopped. After filtration, the residue was immersed and washed by chloroform twice. Then, the 10 g impurity 2 was obtained after evaporation. And the impurity 2 was looked as red powder. The 65 mL ethanol was added into the 15 g impurity 2 in the procession of the circumfluence reaction for 8.5 h. Then it was placed at the room temperature and over night. Then the reaction liquid was frozen for 1.5 h. A spot of ethyl acetate was added into the obtained solid. Then it was filtered and 5.6 g impurity 1 was obtained. The impurity 1 was looked as yellow powder.

HPLC: The analytical HPLC system is Dionex P680 of Dionex USA LIMITED including quaternary pump, ASI-100 auto injector, TCC-100 column container and PDA-100 detector. In order to analyze the two impurities, a CAPCELL PAK C₈ DDS5, 250 mm × 4.6 mm i.d. (5 μ m particle size) was employed and methanol-acetonitrile-buffer (0.075 mol/L monopotassium phosphate-0.5 mol/L citric acid (55:10, v/v) (500:90:325,v/v/v) was used at a flow rate of 1 mL/min at 35 °C. Detector wavelength was set at 254 nm and injection volume is 20 μ L. The test solutions of the rifaximin, impurity 1 and impurity 2, were prepared as 40 μ g/mL, which were dissolved by the mobile phase.

Mass spectroscopy: LC/DAD/MS analyses were performed by AB-3200 Q trap of applied biosystems USA LIMITED. Methanol was used as the mobile phase. Methanol-dissolved samples were prepared at a concentration of 10 ppm and then these samples were directly injected.

Fourier transform infrared photoacoustic spectroscopy: Fourier transform infrared photoacoustic spectra were collected by Bruker Equinox 55 of BRUKER OPTICS in Germany in the 4000 and 400 cm⁻¹ region. Samples, mixed with spectroscopy grade potassium bromide, were pressed and turned into the transparent tablets. These tablets were analyzed by transmittance technique with 26 scansions and 5 cm⁻¹ resolution.

Nuclear magnetic resonance spectroscopy: The ¹H and ¹³C NMR and two-dimensional analyses, HMQC and HMBC, were collected by a Bruker Avance 500 of Bruker Equinox 55 of BRUKER OPTICS in Germany at 500 MHz in Institute of Medical Material, Chinese Academy of Medical Sciences & Peking Union Medical College. Chemical shifts were expressed as ppm (δ) from tetramethylsilane. Samples were dissolved in CDCl₃.

RESULTS AND DISCUSSION

Detection of impurity by HPLC: Fig. 1 shows that in the HPLC chromatogram of the rifaximin the chromatographic behaviour of the two impurities were found as the same as the

Fig. 1. Chromatographic behaviour of the rifaximin raw material compared with those of prepared impurity 1 and impurity 2 in HPLC

preparative impurity 1 and the impurity 2. The normalization content of the impurity 1 or impurity 2 was more than 0.1 %.

Structural elucidation by mass spectrometry: According to the results of the HPLC, these two samples were directly analyzed by MS in order to confirm the molecular weights (Table-1). From the mass spectra, both the molecular ion peaks of the two unknown impurities were 784. The molecular weights of the two unknown impurities were 783. According to obtain detailed fragments, the 784 as the molecular ion peaks of the impurity 1 and impurity 2 was selected for the MS2. Fig. 2 shows that the possible structure of impurity 1 and impurity 2 which were the derivants from rifaximin without two hydrogen atoms and the two impurities were isomers.

Structural confirmation by IR and NMR: The infrared spectrum of the impurity 1 and impurity 2 showed that the main absorption bands were at 3,440, 1,728, 1,650 cm⁻¹, suggesting a strong structural relation with rifaximin. Fig. 3 shows that the bands at 3,083, 2,972 cm⁻¹ of the infrared spectrum of impurity 1 and the bands at 3,056, 2,962 cm⁻¹ of the infrared spectrum of impurity 2 were due to the 8'CH₂ as the terminal methylene group's stretching vibration, respectively and 885 cm⁻¹ of the infrared spectrum of impurity 1 and spectrum of impurity 1 and 883 cm⁻¹ of the infrared spectrum of impurity 2 were the 8'CH₂ bending

TABLE-1 MULTI-LEVEL MS DATA OBTAINED FROM LCMS							
Scan type	Impurity 1, fragment ion peak (m/z) and ion style	Impurity 2, fragment ion peak (m/z) and ion style					
MS1	$\begin{array}{l} 751 \ C_{42}H_{45}N_3O_{10}[C_{43}H_{49}N_3O_{11}-CH_3OH]^+ \\ 346 \ C_{20}H_{14}N_2O_4[[C_{43}H_{49}N_3O_{11}-C_{23}H_{35}NO_7]^+ \\ 580 \ C_{34}H_{32}N_2O_7[C_{43}H_{49}N_3O_{11}-C_9H_{17}NO_4]^+ \\ 299 \ C_{20}H_{27}O_2[C_{43}H_{49}N_3O_{11}-C_{23}H_{22}N_3O_7]^+ \end{array}$	$\begin{array}{l} 784\ C_{43}H_{50}N_3O_{11}[C_{43}H_{49}N_3O_{11}+H]^+\\ 806\ C_{43}H_{49}N_3O_{11}Na[C_{43}H_{49}N_3O_{11}+Na]^+\\ 751\ C_{42}H_{45}N_3O_{10}[C_{43}H_{49}N_3O_{11}-CH_3OH]^+\\ 420\ C_{24}H_{36}O_6[C_{43}H_{49}N_3O_{11}-C_{19}H_{13}N_3O_5]^+\\ 395C_{22}H_{34}O_6[C_{43}H_{49}N_3O_{11}-C_{19}H_{13}N_3O-C_2H_2]^+\\ 329C_{21}H_{29}O_3[C_{43}H_{49}N_3O_{11}-C_{19}H_{13}N_3O-C_2H_2-2H_2O-CH_3OH]^+\\ 302\ C_{19}H_{26}O_3[C_{43}H_{49}N_3O_{11}-C_{19}H_{13}N_3O-C_2H_2-2H_2O-CH_3OH]^+\\ \end{array}$					
MS2	$\begin{array}{l} 751\ C_{42}H_{45}N_3O_{10}[C_{43}H_{49}N_3O_{11}-CH_3OH]^+\\ 766\ C_{43}H_{47}N_3O_{10}\ [C_{43}H_{49}N_3O_{11}-H_2O]^+\\ 722\ C_{42}H_{43}N_3O_9[C_{43}H_{49}N_3O_{11}-H_2O-CH_3CHO]^+\\ 690\ C_{41}H_{40}N_3O_8[C_{43}H_{49}N_3O_{11}-H_2O-CH_3CHO-CH_3OH]^+\\ 540\ C_{34}H_{39}N_2O_6[C_{43}H_{49}N_3O_{11}-C_9H_{10}NO_5]^+\\ 512C_{32}H_{35}N_2O_6[C_{43}H_{49}N_3O_{11}-C_9H_{10}NO_5-C_2H_4]^+\\ 484\ C_{30}H_{31}N_2O_6[C_{43}H_{49}N_3O_{11}-C_9H_{10}NO_5-C_2H_4-C_2H_4]^+\\ 345\ C_{21}H_{31}NO_3[C_{43}H_{49}N_3O_{11}-C_{22}H_{18}N_2O_8]^+\\ 346\ C_{21}H_{32}NO_3[C_{43}H_{49}N_3O_{11}-C_{22}H_{17}N_2O_8]^+ \end{array}$	751 $C_{42}H_{45}N_3O_{10}[C_{43}H_{49}N_3O_{11}-CH_3OH]^+$ 736 $C_{42}H_{43}N_3O_9[C_{43}H_{49}N_3O_{11}-CH_3OH-H_2O]^+$ 766 $C_{43}H_{47}N_3O_{10}[C_{43}H_{49}N_3O_{11}-H_2O]^+$ 724 $C_{41}H_{43}N_3O_9[C_{43}H_{49}N_3O_{11}-H_2O-C_2H_4O]^+$ 706 $C_{41}H_{41}N_3O_8[C_{43}H_{49}N_3O_{11}-H_2O-C_2H_4O-H_2O]^+$ 688 $C_{41}H_{30}N_3O_7[C_{43}H_{49}N_3O_{11}-H_2O-C_2H_4O-H_2O]^+$ 540 $C_{36}H_{33}N_2O_3[C_{43}H_{49}N_3O_{11}-C_7H_{16}NO_8]^+$ 510 $C_{34}H_27N_2O_3[C_{43}H_{49}N_3O_{11}-C_9H_{22}NO_8]^+$ 484 $C_{32}H_{25}N_2O_3[C_{43}H_{49}N_3O_{11}-C_9H_{22}NO_8-C_2H_2]^+$ 456 $C_{30}H_{21}N_2O_3[C_{43}H_{49}N_3O_{11}-C_9H_{22}NO_8-C_2H_2]^+$ 3456 $C_{21}H_{31}NO_3[C_{43}H_{49}N_3O_{11}-C_{22}H_{18}N_2O_8]^+$					

Fig. 2. Structures of the impurity 1 and impurity 2

Fig. 3. FT-IR spectra of rifaximin, impurity 1 and impurity 2

vibration, respectively. These data suggested the existence of the terminal methylene group in impurity 1 and impurity 2 authentically.

Table-2 shows the ¹H NMR chemical shifts of the rifaximin, impurity 1 and impurity 2. There were similar chemical shifts in the CH₃(13,14,30,31,32,33,34,36,37). Table-3 shows the ¹³C NMR chemical shifts of the rifaximin, impurity 1 and impurity 2. Moreover, the lack of the 8'CH₃ was the most remarkable difference among the impurity 1, impurity 2 and rifaximin. Furthermore, the chemical shifts of the 8'CH₂ ethylenic bond in impurity 1 and impurity 2 were 3.442 and 3.979, respectively. In the ¹H NMR spectrum of rifaximin, chemical shift of hydroxyl of 1st position was 17.908 and the chemical shift of hydroxyl of 8th position was 14.908. This was significantly different from the literature of the rifaximin when compared the chemical shifts, probably because vivacious hydrogen atoms are replaced by the CDCl₃ and the apparatuses were used differently. In the ¹³C NMR chemical shifts of 8'CH₂ are less than 80 mainly because of the impact of the irregular electron clouds of the two nitrogen atoms in the heterocyclic ring. So the chemical shifts of 8'CH₂ move to the high field.

TABLE-2									
1 AND IMPURITY 2 AT 500 MHz									
Rifaximin		Impurity 1		Impurity 2					
Proton (s)	δ(ppm)	Proton (s)	δ (ppm)	Proton (s)	δ (ppm)				
CH ₃ (13)	1.98	CH ₃ (13)	1.847	CH ₃ (13)	1.750				
$CH_{3}(14)$	2.10	$CH_{3}(14)$	1.994	$CH_{3}(14)$	2.231				
CH (17)	6.30	CH (17)	6.252	CH (17)	6.490				
CH (18)	6.74	CH (18)	7.082	CH (18)	6.645				
CH (19)	6.18	CH (19)	5.626	CH (19)	6.299				
CH (20)	2.37	CH (20)	0.845	CH (20)	2.878				
CH (21)	3.68	CH (21)	3.741	CH (21)	3.565				
CH (22)	1.53	CH (22)	1.333	CH (22)	1.257				
CH (23)	2.95	CH (23)	2.872	CH (23)	2.945				
CH (24)	1.43	CH (24)	1.208	CH (24)	1.377				
CH (25)	4.95	CH (25)	4.708	CH (25)	4.808				
CH (26)	1.31	CH (26)	2.916	CH (26)	0.847				
CH (27)	3.38	CH (27)	4.069	CH (27)	3.424				
CH (28)	5.08	CH (28)	5.158	CH (28)	5.340				
CH (29)	6.15	CH (29)	5.991	CH (29)	4.119				
$CH_{3}(30)$	2.33	CH ₃ (30)	2.572	CH ₃ (30)	2.513				
$CH_{3}(31)$	0.82	CH ₃ (31)	0.963	CH ₃ (31)	2.264				
$CH_{3}(32)$	1.02	CH ₃ (32)	1.021	CH ₃ (32)	0.902				
$CH_{3}(33)$	0.30	CH ₃ (33)	0.644	CH ₃ (33)	0.526				
$CH_{3}(34)$	-0.44	CH ₃ (34)	-0.099	CH ₃ (34)	-0.020				
CH ₃ (36)	2.07	CH ₃ (36)	2.083	CH ₃ (36)	2.036				
CH ₃ (37)	3.08	CH ₃ (37)	3.020	CH ₃ (37)	3.078				
CH (2')	8.45	CH (2')	7.960	CH (2')	9.296				
CH (3')	7.36	CH (3')	7.303	CH (3')	7.779				
CH (5')	7.10	CH (5')	7.640	CH (5')	6.973				
CH ₃ (8')	2.62	CH ₂ (8')	3.442	CH ₂ (8')	3.979				
-		OH(1)	14.405	OH (8)	13.228				

Conclusion

Preparation of two potential oxydic degradation impurities of rifaximin has been carried out based on the degradation mechanism by using manganese dioxide as the oxidant. The structural characterization of the impurities was elucidated by using MS and other modern spectroscopic (NMR and FTIR)

IABLE-3 ¹³ C NMR δ OF RIFAXIMIN, IMPURITY 1 AND IMPURITY 2 AT 500 MHz									
Rifaximin		Impurity 1		Impurity 2					
Proton (s)	δ (ppm)	Proton (s)	δ (ppm)	Proton (s)	δ (ppm)				
1	171.89	1	165.476	1	180.573				
2	112.03	2	112.220	2	127.118				
3	122.99	3	117.888	3	120.774				
4	128.14	4	124.701	4	128.408				
5	115.51	5	117.201	5	111.245				
6	171.89	6	170.956	6	170.960				
7	104.09	7	105.778	7	109.791				
8	182.19	8	191.323	8	132.704				
9	97.83	9	99.920	9	110.429				
10	155.10	10	162.717	10	146.415				
11	188.84	11	169.965	11	192.960				
12	108.97	12	107.873	12	108.191				
13	20.78	13	20.500	13	20.699				
14	21.44	14	20.873	14	21.404				
15	171.89	15	172.970	15	181.854				
16	130.00	16	127.908	16	138.596				
17	136.21	17	138.594	17	139.707				
18	125.35	18	118.836	18	125.111				
19	142.10	19	138.943	19	142.445				
20	37.78	20	44.015	20	36.466				
21	72.65	21	72.254	21	76.904				
22	32.91	22	32.145	22	31.551				
23	76.75	23	75.333	23	76.999				
24	36.93	24	45.441	24	34.273				
25	73.91	25	76.745	25	73.989				
26	38.59	26	46.552	26	39.811				
27	77.86	27	60.186	27	76.745				
28	115.52	28	74.078	28	78.365				
29	142.10	29	149.436	29	149.865				
30	20.43	30	22.139	30	21.788				
31	17.56	31	9.367	31	14.199				
32	10.76	32	14.338	32	10.726				
33	8.21	33	15.746	33	14.079				
34	8.06	34	9.022	34	8.207				
35	171.89	35	179.179	35	172.540				
36	6.98	36	16.918	36	9.551				
37	56.99	37	55.691	37	57.283				
2a	128.96	2a	126.452	2a	118.241				
3a	117.61	3a	126.205	3a	117.622				
4a	141.75	4a	148.029	4a	149.865				
5a	109.99	5a	110.898	5a	118.856				
6a	142.1	6a	139.105	6a	142.023				
8a	22.35	8a	76.391	8a	76.189				

techniques. The combined result of MS, NMR and FTIR confirmed the structure of unknown impurities as (2S, 20S, 21S,22R,23R,24R,25S,26R,27S)-6,21,23-trihydroxy-27-methoxy-2,4,16,20,22,24,26-heptamethyl-11-methylene-1,5,15-trioxo-1,2,5,11-tetrahydro-2,7-(epoxypentadeca[1,11, 13]trienoimino)furo[2",3":7',8']naphtho[1',2':4,5]imidazo[1,2-a]pyridin-25-yl-acetate and (2S,20S,21S,22R,23R,24R,25S, 26R,27S)-5,21,23-trihydroxy-27-methoxy-2,4,16,20,22,24, 26-heptamethyl-11-methylene-1,6,15-trioxo-1,2,6,11-tetrahydro-2,7-(epoxypentadeca[1,11,13]trienoimino)furo [2",3":7',8']naphtho[1',2':4,5]imidazo[1,2-a]pyridin-25-yl-acetate (Fig. 2).

- 1. J.C. Gillis and R.N. Brogden, Drugs, 49, 467 (1995).
- V. Ojetti, E.C. Lauritano, F. Barbaro, A. Migneco, M.E. Ainora, L. Fontana, M. Gabrielli and A. Gasbarrini, *Exp. Opin. Drug Metab. Toxicol.*, 5, 675 (2009).
- 3. A. Tursi and S. Papagrigoriadis, *Aliment Pharmacol. Therap.*, **30**, 532 (2009).
- L. Gerard, K.W. Garey and H.L. DuPont, *Exp. Rev. Antiinfect. Therap.*, 3, 201 (2005).
- 5. J.J. Descombe, D. Dubourg, M. Picard and E. Palazzini, *Int. J. Clin. Pharmacol. Res.*, **14**, 51 (1994).
- 6. X. Zhang, J. Duan, K. Li, L. Zhou and S. Zhai, J. Chromatogr. B; Anal. Technol. Biomed. Life Sci., 850, 348 (2007).

- 7. R.N. Rao, D.D. Shinde and S.B. Agawane, *Biomed. Chromatogr.*, 23, 563 (2009).
- 8. T. Sudha, P.V. Heamlatha, V.R. Ravikumar, R. Jothi and M. Radhakrishnan, *Asian J. Pharm. Clin. Res.*, **2**, 112 (2009).
- 9. C.-R. Qin and R.-Z. Lu, Chin. J. Antibiotics, 2, 89 (2007).
- 10. Z.-B. Zhang, Z.-W. Li and C.-Y. Li, West Chin. J. Pharm. Sci., 4, 281 (2003).
- 11. European Pharmacopoeia (2010).
- 12. European Pharmacopoeia 6.5 (2009).
- R. Stradi, D. Nava, M. Nebuloni, B. Pastura and E. Pini, J. Pharm. Biomed. Anal., 51, 858 (2009).
- WHO, Impurities in New Drug Substances Q3A (R2) in ICH Guideline, http://www.ich.org/cache/compo/363-272-1.html#Q3A(R). October (2006).