

Synthesis and DNA-Binding Studies of Two Europium(III) Complexes

YE ZHANG^{1,2,3}, KAI WANG², BIQUN ZOU³, XIANXIAN LIU² and XIANGHUI YI^{2,*}

¹College of Chemistry and Chemical Engineering, South Central University, Hunan 410083, P.R. China ²Department of Chemistry, Guilin Normal College, Guangxi 541001, P.R. China ³College of Chemistry and Chemical Engineering, Guangxi Normal University, Guangxi 541004, P.R. China

*Corresponding author: Fax: +86 77 32806321; Tel: +86 77 32823285; E-mail: yixianghui2008@yahoo.com.cn

(Received: 28 September 2010;

Accepted: 14 March 2011)

AJC-9740

Two new europium(III) complexes EuL_3NO_3 and EuL_2Cl_2 (L = coumarin-3-carboxylic anion), have been synthesized and characterized by IR, ¹H NMR, ¹³C NMR, MS and elemental analysis. The DNA binding property of the two complexes has been investigated employing fluorescence spectroscopy. The DNA binding constants for the two complexes have been measured to be 1.64×10^4 L mol⁻¹ and 1.87×10^3 L mol⁻¹ through fluorescence quenching method, indicating that the complexes EuL_3NO_3 prefer to intercalative binding to DNA. Both of the binding numbers of EuL_3NO_3 and EuL_2Cl_2 with DNA have been found to be 1, suggesting that each unit of complex bind with a unit of ct-DNA.

Key Words: Synthesis, Characterization, DNA-binding studies, Europium(III) complexes, Coumarin-3-carboxylic acid.

INTRODUCTION

The interaction between DNA and small molecules plays an important role in life science and is associated with the transcription and replication of DNA, gene mutation and disease origins. Therefore, the study on the interaction is vital for both scientific^{1,2} and therapeutic reasons^{3,4}. In this respect europium(III) complexes have attracted a great deal of attention due to their strong metal to ligand charge transfer (MLCT) absorption, their unique emission characteristics^{5,6}, the perturbance of which could be exploited to study their DNA binding properties.

In addition, the ligands can also create some interesting differences in the space configuration and the electrondensity distribution of metal complexes⁷, which will result in differences in spectral properties and the DNA-binding behaviours of these complexes^{6,8}. So, well designed organic ligands enable a fine tuning of special properties of the metal ions. The chemistry of coumarin-3-carboxylic acid and its derivatives has attracted special interest due to their photophysical properties^{9,10} and wide bioactivities¹¹⁻¹³. They can also act as a tetradentate ligand binding to metal ion¹⁴, while such structures may have strong affinities of binding to DNA through intercalations⁶.

Herein, based on the above conception, we described the synthesis and DNA binding property of two new europium(III) mixed ligand complexes, using coumarin-3-carboxylic acid as the main ligand.

EXPERIMENTAL

All reagents for synthesis were commercially available and employed as received or purified by standard methods prior to use. Infrared spectra were recorded with a Perkin Elmer spectrophotometer on KBr disks. The ¹H and ¹³C NMR studies were carried out by the BRUKER AVANCE 500 instrument and the mass spectral studies were done using BRUKER ESQUIRE HCT instrument. Elemental analyses were determined in the Carlo Erba model 1106 instrument. Melting points were recorded using an electrothermal-WRS-1A melting point apparatus and were uncorrected. The fluorescence spectra were recorded in the RF-5301 fluorospectrophotometer and the fluorescence life were recorded in the FLS-920 luminoscope instrument.

General procedure

Synthesis of coumarin-3-carboxylic acid: Under the room temperature, the mixture of salicylaldehyde (100 mmol), ethanol (50 mL), diethyl malonate (140 mmol) and hexahydropyridine (0.8 mL) was blended together in a round flask and reacted under ultrasonic irradiation (Power 250 w, frequency 40 kHz) for 15 min. This reaction system was then filtered to give a white-solid product. Then the white-solid product was treated with the mixture of ethanol (30 mL) and aqueous solution of sodium hydroxide (50 mL, at the concentration of 4 mol/L) and refluxed for 1 h. The reaction mixture was then poured into 200 mL ice-water and the pH was adjusted

to 4-5 by periodically adding the aqueous solution of HCl (4.0 mol/L). The mixture was filtered to give white crystals of coumarin-3-carboxylic acid.

Synthesis of complex EuL₃NO₃ and EuL₂Cl₂: To the ethanol solution (30 mL) of coumarin-3-carboxylic acid (1 mmol), 5 mL aqueous solution of europium(III) nitrate (0.95 mmol) was added. The mixture was refluxed for 0.5 h and filtered to give white powder of EuL₃NO₃. The synthetic procedure of EuL₂Cl₂ was consistent with that of EuL₃NO₃, while the europium(III) nitrate was replaced by europium(III) chloride.

Coumarin-3-carboxylic acid: Yield 97 %; m.p. 189-191 °C; anal. calcd. (%) for $C_{10}H_6O_4$: C, 63.16; H, 3.18. Found (%): C, 63.33; H, 3.41. MS (ESI) m/z: 191 [M + 1]⁺; IR (KBr, v_{max} , cm⁻¹): 3462 (COOH), 3056 (Ar, C=CH), 1743, 1683 (C=O), 1613, 1569 (Ar, C=CH); ¹H NMR (500 MHz, DMSO, δ , ppm): 13.25 (s, 1H, COOH), 8.70 (s, 1H, C=CH), 7.87 (d, J = 7.7 Hz, 1H, Ar-H), 7.69 (t, J = 7.7 and 7.9 Hz, 1H, Ar-H), 7.35-7.39 (dd, J = 8.3 and 7.5 Hz, 2H, Ar-H); ¹³C NMR (125 MHz, DMSO, δ , ppm): 116.5, 118.4, 118.7, 125.2, 130.6, 134.7, 148.8, 154.9, 157.2, 164.4.

Complex EuL₃**NO**₃**:** Yield 90.2 %; m.p. >300 °C; anal. calcd. (%) for C₃₀H₁₅NO₁₅Eu: C, 46.11; H, 1.93; N, 1.79. Found (%): C, 45.98; H, 1.75; N, 2.01. MS (ESI) m/z: 782 [M + 1]⁺; IR (KBr, v_{max}, cm⁻¹): 3432 (COOH), 3066 (Ar, C=CH), 1671, 1657 (C=O), 1613, 1599, 1576 (Ar, C=CH), 1562, 1452 (NO₃⁻); ¹H NMR (500 MHz, DMSO, δ , ppm): 7.90 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.71 (t, *J* = 7.5 and 7.7 Hz, 1H, Ar-H), 7.23-7.26 (dd, *J* = 7.4 and 4.5 Hz, 2H, Ar-H), 5.84 (s, 1H, C=CH); ¹³C NMR (125 MHz, DMSO, δ , ppm): 116.3, 118.3, 118.7, 125.1, 129.8, 133.9, 146.2, 149.0, 152.5, 155.1.

Complex EuL₂**Cl**₂: Yield 86.7 %; m.p. > 300 °C; anal. calcd. (%) for C₂₀H₁₀O₈Cl₂Eu: C, 39.96; H, 1.68. Found (%): C, 39.77; H, 1.83. MS (ESI) m/z: 602 [M + 1]⁺; IR (KBr, v_{max} , cm⁻¹): 3429 (COOH), 3068 (Ar, C=CH), 1670, 1656 (C=O), 1614, 1599, 1562 (Ar, C=CH); ¹H NMR (500 MHz, DMSO, δ , ppm): 7.86 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.70 (t, *J* = 7.1 and 8.4 Hz, 1H, Ar-H), 7.25-7.29 (dd, *J* = 7.4 and 7.3 Hz, 2H, Ar-H), 6.08 (s, 1H, C=CH); ¹³C NMR (125 MHz, DMSO, δ , ppm): 116.3, 118.4, 118.7, 124.9, 129.7, 133.5, 145.5, 152.8, 155.3, 157.7.

Detection method: The DNA-binding property the two complexes were investigated by fluorescence quenching spectroscopy. At room temperature, the two complexes and ct-DNA were dissolved in DMF-water (7:3, v:v) to the proper concentration. After addition of ct-DNA (0.1 mL) solution to complxes solution (3.9 mL), respectively, the mixed was allowed to stand for 0.5 h (until the stable) with intermittent shaking and the fluorescence spectroscopy was scanned in the RF-5301 fluorospectrophotometer.

RESULTS AND DISCUSSION

The structures of compounds synthesized were identified by FT-IR, ¹H NMR, ¹³C NMR, MS and micro analysis. The characterized data of the synthesized compounds were given in experimental section.

In the IR spectra of the complexes, noticeable changes were observed compare with the ligand coumarin-3-carboxylic acid, especially in the frequencies of the v(C=O) and v(COOH) vibrations. Upon complexation, v(C=O) frequencies shifted to the right as 27-73 cm⁻¹ and the peaks weaken relatively, while v(COOH) frequencies shifted to the left as 30-34 cm⁻¹. In ¹H NMR spectra of the complexes, the peaks of COOH group disappear and the peaks of C=CH group shifted to high field. In ¹³C NMR spectra of the complexes EuL₃NO₃ and EuL₂Cl₂, carbon peaks besides the oxygen atom changed obviously. The results indicated that the ligand coumarin-3carboxylic acid was bonded with europium(III) through the carboxylic acid and carbonyl groups. Besides, the MS and micro analysis data were consistent with their structure.

The fluorescence-quenching spectroscopy was employed to study DNA-binding property of two europium(III) complexes. Upon addition of ct-DNA into the DMSO-H₂O (v:v = 7:3) solution of the two complexes, the fluorescence intensity decreased gradually (Fig. 1).

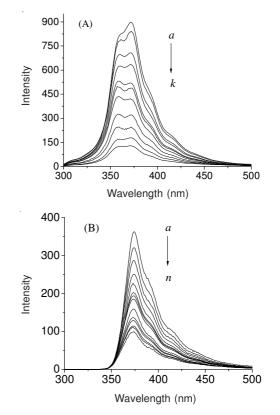


Fig. 1. Fluorescence spectra of complexes EuL₃NO₃ (A) and EuL₂Cl₂ (B) quenched by DNA (The concentration of europium(III) complexes EuL₃NO₃ and EuL₂Cl₂ were both 1.0×10^{-4} mol L⁻¹; the concentrations of DNA a \rightarrow k (a \rightarrow n) were: 0, 0.68, 0.96, 1.37, 1.77, 2.05, 2.73, 3.41, 4.08, 5.18, 6.98 $\times 10^{-4}$ (0, 0.68, 1.37, 2.05, 2.75, 3.41, 4.10, 4.78, 5.46, 6.14, 6.83, 7.51, 8.19, 8.87 $\times 10^{-4}$) mol L⁻¹, respectively.)

Fluorescence quenching can be static, deriving from the formation of a ground state complex between the fluorophore and quencher or dynamic, resulting from collisional encounters between the fluorophore and quencher¹⁵. Supposing it as dynamic quenching, Stern-Volmer eqn. 1¹⁵ was employed to analyse the fluorescence quenching mechanism (Fig. 2(A)).

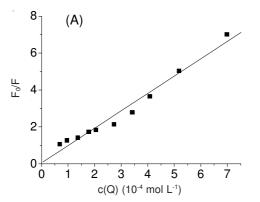
$$\frac{F_0}{F} = 1 + K_q \tau_0 c(Q) = 1 + K_{cv} c(Q)$$
(1)

where F_0 and F were the steady-state fluorescence intensities in the absence and presence of quencher (ct-DNA), respectively,

	TABLE-1							
DATA OF FLUORESCENCE SPECTRUM, THE BINDING CONSTANTS K _a AND BINDING NUMBERS OF THE COMPLEXES								
Compound	λ_{ex} (nm)	$\lambda_{_{em}}\left(nm ight)$	$c(DNA)_{max} (mol L^{-1})$	$K_{cv} (L mol^{-1})$	$K_{q} (L mol^{-1} s^{-1})$	$K_a (L mol^{-1})$	n	
EuL ₃ NO ₃	260	372	6.98×10^{-4}	9.40×10^{4}	2.23×10^{11}	1.64×10^{4}	0.95	
EuL Cl.	258	347	8.87×10^{-4}	3.08×10^{4}	9.72×10^{10}	1.87×10^{3}	1.09	

 k_q the quenching rate constant of the biological molecule, c(Q) the concentration of quencher (DNA), τ_0 the average lifetime of the molecule without any quencher and the fluorescence lifetime of the complexes EuL₃NO₃ and EuL₂Cl₂ were measured to be 0.422 and 0.317 ms by the FLS-920 instrument, respectively. K_{SV} was the Stern-Volmer quenching constant. Accordingly, eqn. 1 was applied to determine K_{SV} by linear regression of a plot of F₀/F against c(Q) and the Stern-Volmer plots were shown in Fig. 2(A).

In Table-1, k_q was much greater than the value of the maximum scatter collision quenching constant 2.0×10^{10} L mol⁻¹ s⁻¹ ¹⁶, which indicated that the fluorescence quenching was caused by a specific interaction. Therefore, the mechanism of fluorescence quenching was a static quenching procedure and the quenching data must be analyzed according to the modified Stern-Volmer eqn. $2^{15.17}$.


$$\frac{F_0}{F_0 - F} = \frac{F_0}{\Delta F} = \frac{1}{f_a k_a c(Q)} + \frac{1}{f_a}$$
(2)

In this case, ΔF was the difference of fluorescence intensity in absence and presence of the quencher at the concentration c(Q), f_a the fraction of accessible fluorescence and K_a was the binding constants for the quencher-acceptor system.

The modified Stern-Volmer plots were shown in Fig. 2(B) and the corresponding quenching constants K_a of the complexes EuL₃NO₃ and EuL₂Cl₂ were found to be 1.64×10^4 L mol⁻¹ and 1.87×10^3 L mol⁻¹ (Table-1), indicating that complex EuL₃NO₃ prefer to intercalative binding to DNA. It suggested that the ligands and complexion patterns play an important role in the binding to DNA. The binding numbers of EuL₃NO₃ and EuL₂Cl₂ with DNA was found to be 0.95 and 1.05 (approximately equal to 1, Table-1), respectively, according to the eqn. 3^{15,18}. It suggests that each unit complex bind with a unit of ct-DNA.

$$\log\left(\frac{F_0 - F}{F}\right) = \log K_A + n \log c(Q)$$
(3)

Since the interaction between DNA and small molecules plays an important role in life science, the studies above are expected to be much useful in the design of a new kinds of europium(III) complexes analogs with novel biomedical functions and DNA-binding properties.

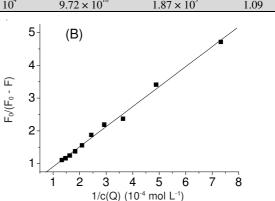


Fig. 2. Stem-Volmer (A) and Lineweaver-Burk (B) plots of the fluorescence quenching of complex EuL₃NO₃

ACKNOWLEDGEMENTS

This study was supported by the National Natural Science Foundation of China (No. 20762001) and the Guangxi Department of Education Research Project (No. 200807MS075, 200807MS076, 200911MS281, 200911MS282).

REFERENCES

- D.H. Johnston, K.C. Glasgow and H.H. Thorp, J. Am. Chem. Soc., 117, 8933 (1995).
- G.M. Blackburn and M.J. Gait, Nucleic Acids in Chemistry and Biology, IRL Press, Oxford, UK (1990).
- B. Rosenberg, L.V. Camp, J.E. Trosko and V.H. Mansour, *Nature*, 222, 385 (1969).
- 4. S.J. Lippard, Acc. Chem. Rev., 11, 211 (1978).
- 5. J.Y. Li, Rare Earth Luminescence Material and Its Application, Chemical Industry Press, Beijing, China (2003).
- 6. Y.C. Liu and Z.Y. Yang, J. Inorg. Biochem., 103, 1014 (2009).
- M.C. DeRosa, D.J. Hodgson, G.D. Enright, B. Dawson, C.E.B. Evans and R.J. Crutchley, *J. Am. Chem. Soc.*, **126**, 619 (2004).
- D.L. Arockiasamy, S. Radhika, R. Parthasarathi and B.U. Nair, *Eur. J. Med. Chem.*, 44, 2044 (2008).
- B.Y. Wang, Y.L. Hu and Z.X. Su, *React. Funct. Polym.*, 68, 1137 (2008).
 N. Kitamura, S. Kohtani, R. Nakagaki and J. Photoch, *Photobiol. C: Photochem. Rev.*, 6, 168 (2005).
- H. Madari, D. Panda, L. Wilson and R. Jacobs, *Cancer Res.*, 63, 1214 (2003).
- G.J. Keating and R. O'Kennedy, In eds.: R. O'Kennedy and R.D. Thornes, The Chemistry and Occurrence of Coumarins, John Wiley & Sons, West Sussex, England, pp. 23-46 (1997).
- R.D.H. Murray, J. Méndez and S.A. Brown, The Natural Coumarins, John Wiley & Sons, NewYork, USA (1982).
- B.S. Creaven, D.A. Egan, K. Kavanagh, M. McCann, M. Mahon, A. Noble, B. Thati and M. Walsh, *Polyhedron*, 24, 949 (2005).
- J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, USA (1999).
- 16. R.E. Maurice and A.G. Camillo, Anal. Biochem., 114, 199 (1981).
- 17. S.S. Lehrer, Biochemistry, 10, 3254 (1971).
- 18. X.J. Chang, Y. Huang and Q. He, Acta Chim. Sinica, 63, 222 (2005).