

Calculation of Coster-Kronig Enhancement Factors For ₆₀Nd and ₆₁Pm at Different Excitation Energies

R. YILMAZ^{1,*}, R. TAS², R. BABAYIGIT² and K. ARICI³

¹Department of Physics, Faculty of Sciences and Arts, Yuzuncu Yil University, Van, Turkey ²Institute of Sciences, Yuzuncu Yil University, Van, Turkey ³Department of Physics, Faculty of Science and Arts, Kilis 7 Aralik University, Kilis, Turkey

*Corresponding author: E-mail: ryilmaz@yyu.edu.tr

(Received: 19 October 2010;

Accepted: 14 March 2011)

AJC-9749

Coster-Kronig processes are radiationless in which an inner-shell vacancy is transferred from one subshell of an atom to another, both belonging to the same principal shell. Because of the effect of Coster-Kronig transition on L X-ray fluorescence cross sections, an increase in L X-ray intensity were calculated theoretically at different excitation energies for L_1 , L_2 and L_3 subshells. These are called as Coster-Kronig enhancement factors and were represented as $\kappa_i(i = \alpha, \beta, l)$. These calculated values were compared with other experimental and theoretical values. Calculations showed that when the excitation energies were increased with respect to absorbtion edge energy, L X-ray fluorescence cross sections decrease while Coster-Kronig enhancement factors increase.

Key Words: X-Ray fluorescence, Coster-Kronig transitions, Enhancement factors.

INTRODUCTION

X-Ray fluorescence (XRF) cross-sections are of great importance in the fields of atomic, molecular and radiation physics. These values required for quantitative multi-element trace analysis using energy-dispersive X-ray fluorescence, dosimetric computations for health physics and industrial irradiation processing. In addition, these values provide an indirect check on physical parameters, such as L subshell ionization cross-sections, Coster-Kronig transition probabilities.

The X-ray fluorescence cross-section is defined as the product of corresponding photoelectric cross-section and fluorescence yield at a given excitation energy. But, particularly the L_3 subshell X-ray lines, estimation of XRF cross-sections is not so straightforward because of the possibility of the socalled Coster-Kronig transitions. These transitions are nonradiative transitions, in which the two inner shells electrons are situated on two different subshells of the same inner shell (*e.g.*, L_1 and L_3). Such transitions cause an additional excitation of L_3 subshell state, thereby enhancing the fluorescence crosssections for L_{α} and other subshell X-ray lines^{1,2}.

A systematic study of L X-ray fluorescence crosssections, L shell fluorescence yields, Coster-Kronig transitions and the effect of Coster-Kronig transitions for different elements as a function of incident photon energy has previously been undertaken³⁻⁹. Recently, the Coster-kronig enhancement factors have investigated both experimentally and theoretically for some elements. Öz *et al.*^{10,11} have investigated theoretical and experimental Coster-Kronig enhancement factors of some elements with $66 \le Z \le 72$ and $74 \le Z \le 90$. In a previous work^{12,13}, we measured Coster-Kronig enhancement factors for Yb, Lu, Os and Pt elements and for Cs. Thakkar *et al.*¹⁴ have investigated contribution of Coster-Kronig transfer to proton induced L subshell X-ray production cross-sections for direct and indirect vacancie.

In this paper, we studied calculation of coster-kronig enhancement factors for $_{60}$ Nd and $_{61}$ Pm at different excitation energies. To investigate the role of Coster-Kronig transitions on L XRF cross-sections and the effect on the enhancement of L X-ray intensity, L subshells of for each element, excitation energies were chosen according to binding energies. It means that the cases are $B_{L_3} < E < B_{L_2}$, $B_{L_2} < E < B_{L_1}$ and $B_{L_1} < E < B_K$, where the L_1 , L_2 , L_3 are the subshells, B_{L_1} 's are the binding energies of the subshells, K is the ground shell and E is the excitation energy.

THEORETICAL

The theoretical values of L X-ray fluorescence cross sections are calculated from subshell photoionization cross section¹⁵ (σ_i , i = 1,2,3), fluoresence yield¹⁶ (ω_i , i = 1,2,3), Coster-Kronig transition probabilities¹⁶ (f_{ij}, i = 1,2; j = 2,3) and radiative decay rates¹⁷ (F_{ij}, i = 1,2,3 and j = α , β , γ ,l).

$$\sigma_{L_{\ell}} = [\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3]\omega_3 F_{3l}$$
(1)

$$\sigma_{L_{\alpha}} = [\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3]\omega_3 F_{3\alpha}$$
(2)

$$\sigma_{L_{\beta}} = \sigma_{1}\omega_{1}F_{1\beta} + (\sigma_{1}I_{12} + \sigma_{2})\omega_{2}F_{2\beta} + [\sigma_{3} + \sigma_{2}f_{23} + \sigma_{1}(f_{13} + f_{12}f_{23})]\omega_{3}F_{3\beta} \quad (3)$$

$$\sigma_{L_{\gamma}} = \sigma_1 \omega_1 F_{1\gamma} + (\sigma_2 + \sigma_1 f_{12}) \omega_2 F_{2\gamma}$$
⁽⁴⁾

The calculated L XRF cross-sections are given in Tables 1-3.

TABLE-1					
NLY WHEN L	¹³ SUBSHELL	WAS EXCITE	D)		
E (keV)	$\sigma_{L_{\alpha}}$	σ_{L_β}	σ_{L_1}		
	Calcd.	Calcd.	Calcd.		
6.244	7586.649	1329.043	295.344		
6.721	6327.653	1108.494	246.332		
6.497	7658.432	1352.585	298.089		
7.012	6390.696	1129.202	249.089		
	OSS-SECTION NLY WHEN I E (keV) 6.244 6.721 6.497 7.012	$\begin{array}{r} \text{TABLE-1} \\ \text{OSS-SECTIONS (BARNS/A')} \\ \text{NLY WHEN } \text{L}_3 \text{SUBSHELL} \\ \hline \\ \hline \\ \text{E (keV)} \\ \hline \\ \hline \\ \text{Calcd.} \\ \hline \\ \text{6.244} \\ \hline \\ \text{6.721} \\ \hline \\ \text{6.327.653} \\ \hline \\ \text{6.497} \\ 7.658.432 \\ \hline \\ \text{7.012} \\ \hline \\ \text{6390.696} \\ \hline \end{array}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$		

TABLE-2
L XRF CROSS-SECTIONS (BARNS/ATOM) FOR 60Nd and 61Pm
(WHEN L ₃ AND L ₂ SUBSHELLS WERE EXCITED)

Element E (ke	E (keV)	$\sigma_{L_{\alpha}}$	σ_{L_β}	σ_{L_1}	$\sigma_{L_{\gamma}}$
		Calcd.	Calcd.	Calcd.	Calcd.
60Nd	6.725	6725.565	4338.321	261.822	618.468
	7.087	6043.189	3940.328	233.271	560.970
61Pm	7.069	6725.473	4749.768	262.137	632.376
	7.388	6011.274	4418.237	234.300	575.037

		TABLE-3	
L XRF CROSS-3	SECTIONS	(BARNS/ATOM) FOR 60Nd and 61Pn	n
(WHEN I		CUDCHELL CWEDE EVCITED)	

(5/ 2			-	/
Element E	E (keV)	$\sigma_{L_{\alpha}}$	σ_{L_β}	σ_{L_1}	$\sigma_{L_{\gamma}}$
		Calcd.	Calcd.	Calcd.	Calcd.
₆₀ Nd	8.000	4831.684	3919.085	188.094	657.401
	10.000	2627.764	2261.662	102.297	577.820
₆₁ Pm	8.000	5400.216	4644.906	210.483	625.947
	10.00	2956.054	2706.276	121.632	576.021

Determination of coster-kronig enhancement factors: As mentioned before, Coster-Kronig transitions are nonradiative transitions. Because of the effect of Coster-Kronig transition on L X-ray fluorescence cross sections, an increase in L X-ray intensity were calculated theoretically at different excitation energies for L_1 , L_2 and L_3 subshells. Enhancement factors (κ_i) can be calculated using the following equations¹¹.

$$\kappa_{L,\alpha} = \frac{\sigma_1(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3}{\sigma_3}$$
(5)

$$\kappa_{\beta} = \frac{\sigma_{1}\omega_{1}F_{1\beta} + (\sigma_{1}f_{12} + \sigma_{2})\omega_{2}F_{2\beta} + [\sigma_{3} + \sigma_{2}f_{23} + \sigma_{1}(f_{13} + f_{12}f_{23})]\omega_{3}F_{3\beta}}{\sigma_{1}\omega_{1}F_{1\beta} + \sigma_{2}\omega_{2}F_{2\beta} + \sigma_{3}\omega_{3}F_{3\beta}}$$
(6)

Both the theoretical Coster-Kronig enhancement factors for $_{60}$ Nd and $_{61}$ Pm are given in Tables 4-6 (in these tables, when L₃ and L₂ were excited, Coster-Kronig enhancement factors were represented to κ_{i_1} ; when L₃, L₂ and L₁ were excited, Coster-Kronig enhancement factors were represented by κ_{i_2}).

TABLE-4					
κ_{α_1} AND κ_{α_2} COSTER–KRONIG ENHANCEMENT					
	FACTO	RS FOR 60Nd a	and ₆₁ Pm		
Element	E (keV)	κ_{α_1}	E (keV)	κ_{α_2}	
		Calcd.		Calcd.	
₆₀ Nd	6.775	1.086	8.000	1.209	
	7.087	1.097	10.000	1.247	
₆₁ Pm	7.069	1.085	8.000	1.184	
	7.388	1.088	10.000	1.310	

TABLE-5 κ_{ℓ_1} AND κ_{ℓ_2} COSTER–KRONIG ENHANCEMENT EACTORS FOR Nd and Pm

$1 \text{ACTORS FOR}_{60} \text{AC and}_{61} \text{III}$					
Element	E (keV)	κ_{ℓ_1}	E (keV)	κ_{ℓ_2}	
	_()	Calcd.	_(,)	Calcd.	
₆₀ Nd	6.775	1.086	8.000	1.209	
	7.087	1.097	10.000	1.247	
61Pm	7.069	1.085	8.000	1.184	
	7.388	1.088	10.000	1.310	

TABLE-6 κ_{β_1} AND κ_{β_2} COSTER–KRONIG ENHANCEMENT FACTORS FOR ...Nd and ..Pm

171010001000_{60} we use $_{61}$ m					
Element	E (keV)	κ_{β_1}	E (keV)	κ_{β_2}	
		Calcd.		Calcd.	
Nd	6.775	1.022	8.000	1.112	
60 ¹ NU	7.087	1.022	10.000	1.130	
Dm	7.069	1.020	8.000	1.101	
₆₁ F 111	7.388	1.022	10.000	1.120	

RESULTS AND DISCUSSION

The values of Coster-Kronig enhancement factors for ₆₀Nd and ₆₁Pm determined theoretically using eqns. 5 and 6, are listed in Tables 4-6. It is observed that the presence of nonradiative transitions cause changes in the X-ray intensities, thus it must be taken into account in quantative XRF. It can be seen from Tables 1-3 that when the excitation energies were increased, L X-ray fluorescence cross sections decrease.

In the present work, the results indicate 8.5-9.7 % for theoretical value of κ_{α_1} and κ_{l_1} enhancement of the XRF cross-sections; 18.4-31.0 % for theoretical value of κ_{α_2} and κ_{l_2} enhancements of the XRF cross-sections; 2.0-2.2 % for theoretical value of κ_{β_1} the enhancement of the XRF cross-sections and 10.1-13.0 % for theoretical value of κ_{β_2} enhancement of the XRF cross-sections. Enhancements up to 65 % in the XRF cross-sections were reported by Rani *et al.*². Öz *et al.*^{10,11} reported the measurements of Coster-Kronig enhancement factors of some elements in the atomic number range $66 \le Z \le 72$ and $74 \le Z \le 90$ using photoionization of method. The present values are generally in agreement with the studies of Öz *et al.*^{10,11}.

Consequently, it can be seen from Tables 4-6 that the intensities of the L_{β} lines arising from Coster-Kronig transitions are smaller than that for L_{α} and L_{l} . It can also be seen from Tables 1-6 that calculations showed that when the excitation energies were increased with respect to absorption edge energy, L X-ray fluorescence cross sections decrease while Coster-Kronig enhancement factors increase.

REFERENCES

- 1. J.L. Labar, X-Ray Spectrom., 20, 111 (1991).
- 2. A. Rani, N. Nath and S.N. Chaturvedi, X-Ray Spectrom., 18, 77 (1989).
- 3. E. Öz, Y. Özdemir, N. Ekinci, M. Ertugrul, Y. Sahin and H. Erdogan, *Spectrochim. Acta*, **55B**, 1869 (2000).
- 4. E. Öz, N. Ekinci, Y. Özdemir, M. Ertugrul, Y. Sahin and H. Erdogan, J. Phys. B: At. Mol. Opt. Phys., **34**, 631 (2001).
- 5. A. Kaya and M. Ertugrul, J. Electr. Spectrosc. Rel. Phenom., 130, 111 (2003).
- 6. I. Han, L. Demir and M. Agbaba, Radiat. Phys. Chem., 76, 1551 (2007).
- 7. M. Ertugrul, Nucl. Instrum. Meth. B, 119, 345 (1996).
- 8. M. Ertugrul, J. Electr. Spectrosc. Rel. Phenom., 125, 69 (2002).

- 9. S. Puri and N. Singh, Radiat. Phys. Chem., 75, 2232 (2006).
- 10. E. Öz, N. Ekinci, M. Ertugrul and Y. Sahin, X-Ray Spectrom., 32, 153 (2003).
- 11. E. Öz, Y. Sahin and M. Ertugrul, Radiat. Phys. Chem., 69, 17 (2004).
- 12. R. Yilmaz, E. Öz, M. Tan, R. Durak, A.I. Demirel and Y. Sahin, *Radiat. Phys. Chem.*, **78**, 318 (2009).
- 13. R. Yilmaz and K. Arici, Asian J. Chem., 22, 5463 (2010).
- 14. R. Thakkar, N. Singh and K.L. Allawadhi, Asian J. Chem., 21, S254 (2009).
- 15. J.H. Scofield, Lawrence Livermore Laboratory Report, California (1973).
- 16. M.O. Krause, J. Phys. Chem. Ref. Data, 8, 307 (1979).
- 17. J.H. Scofield, Atom. Data Nucl. Data Tables, 14, 121 (1974).