
INTRODUCTION

As a potential alternative to expensive and time-consu-

ming experimental trial and error approach traditionally

adopted to optimize chromatographic separations, retention

predictive models have received considerable attention in

recent years1. An important property that has been extensively

studied in QSAR is the chromatographic retention time. A

quantitative structure-retention relationship (QSRR) study

involves the prediction of chromatographic retention para-

meters using molecular structure. Quantitative structure-

retention relationship studies are widely investigated in gas

chromatography (GC) and high-performance liquid chroma-

tography (HPLC)2. Chromatographic retention is a physical

phenomenon that is primarily dependent on the interactions

between the solute and the stationary phase. Molecular group

contribution methods are widely employed to estimate gas

chromatographic retention parameters3.

Artificial neural networks (ANNs) are among the best

available tools to generate non-linear models. Artificial neural

networks are parallel computational devices consisting of
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groups of highly interconnected processing elements called

neurons. Artificial neural networks (ANNs), was inspired by

scientist's interpretation of the architecture and functioning of

the human brain4,5. However, a methodology related to non-

linear regression techniques was developed6,7. Reviews have

been published concerning applications of ANN in different

fields8,9. Recently, artificial neural networks (ANNs) have been

used to a wide variety of chemical problems such as spectral

analysis10, prediction of dielectric constant11 and mass spectral

search12. Artificial neural networks have been applied to QSPR

analysis due to its flexibility in modeling of non-linear

problems, mainly in response to increase accuracy demands.

They have been widely used to predict many physico-chemical

properties13-17. Currently the phenols, a group of ubiquitous

compounds in environmental samples mainly because of their

heavy uses in the chemical industries, constitute an important

class of ground water contaminants18-20. The phenolic

micropollutants generally include chloro-, bromo-, nitro- and

alkyl- phenols. Some of theses are either known or suspected

endocrine disrupters. With the growing concern about the



water quality, trace-level analysis of these phenols has become

important in recent years21.

The main aim of the present work is development of a

QSRR models by using ANN as non-linear method to predict

the retention times of various phenols and comparison with

MLR and PLS as linear methods.

In the present work, a QSRR study has been carried out

on the GC retention times (tR) for 50 diverse phenols by using

structural molecular descriptors. The two linear methods, MLR

and PLS and non-linear method, feed forward neural network

with back-propagation training along with stepwise SPSS as

variable selection software were used to model the retention

times with the structural descriptors.

EXPERIMENTAL

The experimental data of the retention times data (tR), for

50 chemical compounds including phenols were taken from

Kim et al.21, as shown in Table-1. The data set randomly was

divided into two subsets in ANN, MLR and PLS: training and

test sets including 40 and 10 compounds, respectively.

Multiple linear regression and partial least squares

analysis: The multiple linear regression (MLR) is an extension

of the classical regression method to more than one dimension22.

Multiple linear regression calculates QSAR equation by perfor-

ming standard multivariable regression calculations using multiple

variables in a single equation. The stepwise multiple linear regre-

ssion is a commonly used variant of MLR. In this case, a multiple-

term linear equation is also produced, but not all independent

variables are used. Each variable is added to the equation at a

time and a new regression is performed. The new term is

retained only if equation passes a test for significance. This

regression method is especially useful when the number of

variables is large and when the key descriptors are not known23.

The PLS model will try to find a few PLS factors (also

known as components or latent variables) that explain most of

the variations in both predictors and responses. Factors that

explain response variation provide good predictive models for

new responses and factors that explain predictor variation

which are represented by the observed values of the predictors.

The partial least squares (PLS) regression method is well suited

for problems with multicollinear predictor and response vari-

ables. Partial least squares is explained in detail in literature24,25.

To obtain the PLS model with the best predictive performance,

the number of PLS components that optimize the predictive

ability of the model should be determined. This is typically

done by cross-validation, a procedure in which the available

data within the training set are split into several subgroups

called validation sets. The prediction residual sum of squares

(PRESS) for the test samples is determined as a function of

the PLS components retained in the regression model which

was formed with the training data. The procedure is usually

repeated several times, with each subset in the training set

being part of the test samples at least once26.

Artificial neural networks (ANN): Principles, functioning

and applications of artificial neural networks have been

adequately described elsewhere27,28. The relevant principle of

supervised learning in an ANN is that it takes numerical inputs

(the training data) and transfers them into desired outputs. The

input and output nodes may be connected to any other nodes

within the network. The way in which each node transforms

its input depends on the so-called 'connection weights' or '

connection strength' and bias of the node, which are modi-

fiable. The output values of each node depend on both the

weight strength and bias values. Training of the ANN can be

performed by using the backpropagation algorithm. In order

to train the network using the back propagation algorithm, the

differences between the ANN output and its desired value are

calculated after each training iteration and the values of weights

and biases modified by using these error terms.

A three-layer feed-forward network formed by one input

layer consisting of a number of neurons equal to the number

of descriptors, one output neuron and a number of hidden units

fully connected to both input and output neurons, were adopted

in this study. The most used learning procedure is based on

the back-propagation algorithm, in which the network reads

inputs and corresponding outputs from a proper data set

(training set) and iteratively adjusts weights and biases in order

to minimize the error in prediction. To avoid overtraining and

consequent deterioration of its generalization ability, the predic-

tive performance of the network after each weight adjustment

is checked on unseen data (validation set).

In this work, training gradient descent with momentum is

applied and the performance function was the mean square

error (MSE), the average squared error between the network

outputs and the actual output.

The QSRR models for the estimation of the retention times

of various compounds are established in the following six steps:

molecular structure input and generation of the files containing

the chemical structures stored in a computer-readable format;

quantum mechanics geometry optimization with a semi-

empirical method; structural descriptors computation; structural

descriptors selection; structure-retention models generation

with the multivariate methods and statistical analysis.

Computer hardware and software: All calculations were

run on a Pentium IV personal computer with windows XP as

operating system. The molecular 3D structures of data set were

sketched using hyperchem (ver. 7.1), then each molecule was

"cleaned up" and energy minimization was performed using

the geometry. Optimization was done using semiempirical

AM1 (Austin Model) Hamiltonian method. After optimization

of structures, several descriptors are computed by hyperchem.

Then 3D structures with lower energy conformers obtained

by the aforementioned procedure were fed into dragon (ver.

5.2-2005) for calculation of the structural molecular descriptors

(constitutional, topological, connectivity, geometrical, getaway

and charge descriptors). Through these descriptors which having

values exceeding 90 % zero or have equal values further than

90 % are not useful and should be removed. Then Descriptor

selection was the accomplished by using Stepwise SPSS (SPSS

Ver. 11.5, SPSS Inc.). PLS regression (PLS_Toolbox, version

2.1, Eigenvector Company) and other calculations were

performed in the MATLAB (version 7.0, MathWorks, Inc.)

environment.

RESULTS AND DISCUSSION

Descriptors selection: Generally the first step in variables

selection is the calculation of the correlation between variables
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TABLE-1 
DATA SET AND CORRESPONDING OBSERVED AND (ANN, MLR, PLS) PREDICTED VALUES OF RETENTION TIMES (tR) 

DB-5 column DB-17 column 

No. Name tR 
(exp) 

tR 
(ANN) 

tR 
(PLS) 

tR 
(MLR) 

Name tR 
(Exp) 

tR 
(ANN) 

tR 
(PLS) 

tR 
(MLR) 

 Training set Training set 

1 Phenol  1388 1402.3 1400.7 1411.4 Phenol  1617 1632.8 1667.3 1667.3 

2 m-Cresol 1484 1461.8 1485.1 1482.7 o-Cresol 1676 1712.2 1735.3 1735.3 

3 p-Cresol 1492 1529.9 1517.8 1533.7 m-Cresol 1719 1724.8 1750.3 1750.3 

4 2-Ethylphenol 1512 1552.7 1584.2 1579.5 p-Cresol 1731 1691.5 1711.2 1711.2 

5 2-Chlorophenol 1529 1546.8 1553.4 1554.0 2,6-Dimethylphenol 1733 1785.7 1787.8 1787.8 

6 3-Chlorophenol 1546 1540.1 1548.2 1545.9 2-Ethylphenol 1745 1762.2 1755.8 1755.8 

7 2,5-Dimethylphenol 1546 1581.3 1606.6 1607.1 2-Chlorophenol 1804 1814.3 1824.2 1824.2 

8 2,3-Dimethylphenol 1584 1550.3 1581.2 1567.4 3-Chlorophenol 1780 1811.2 1819.5 1819.5 

9 2-Methoxyphenol 1586 1562.4 1570.3 1575.8 2,5-Dimethylphenol 1780 1763.0 1760.8 1760.8 

10 4-Ethylphenol 1598 1583.8 1600.3 1604.5 2,3-Dimethylphenol 1836 1800.1 1805.2 1805.1 

11 2,3,6-Trimethylphenol 1639 1644.5 1701.3 1685.4 2-Methoxyphenol 1903 1839.3 1825.5 1825.5 

12 4-Isopropylphenol 1656 1643.9 1689.1 1682.1 2-n-Propylphenol 1821 1885.9 1859.5 1859.5 

13 3,5-Dichlorophenol 1674 1701.2 1685.1 1666.8 4-Ethylphenol 1833 1779.7 1778.8 1778.8 

14 2,4-Dichlorophenol 1674 1720.7 1718.9 1719.6 2,3,6-Trimethylphenol 1882 1852.1 1826.3 1826.3 

15 2,3,5-Trimethylphenol 1676 1641.1 1697.3 1679.2 4-Isopropylphenol 1884 1868.6 1850.5 1850.5 

16 4-n-Propylphenol 1686 1677.5 1704.5 1705.2 3,5-Dichlorophenol 1942 1952.1 1946.7 1946.7 

17 2,3-Dichlorophenol 1710 1691.0 1693.5 1679.9 2,4-Dichlorophenol 1977 1961.0 1962.5 1962.5 

18 3,4-Dichlorophenol 1722 1720.7 1718.9 1719.6 4-n-Propylphenol 1919 1923.2 1914.6 1914.6 

19 2-Nitrophenol 1726 1714.1 1683.0 1691.8 2,3-Dichlorophenol 2002 1970.8 1977.9 1977.9 

20 4-tert-Butylphenol 1727 1731.3 1779.9 1761.7 3,4-Dichlorophenol 1876 1958.9 1957.5 1957.5 

21 3-Nitrophenol 1765 1776.3 1705.5 1726.9 4-tert-Butylphenol 1952 1967.2 1948.7 1948.7 

22 4-Nitrophenol 1790 1742.3 1693.5 1708.2 3-Nitrophenol 2068 2047.6 2058.9 2058.9 

23 4-n-Butylphenol 1794 1799.7 1811.3 1807.7 2,4,6-Trichlorophenol 2041 2081.1 2103.6 2103.6 

24 2,4,5-Trichlorophenol 1827 1868.4 1874.8 1872.1 4-Nitrophenol 2110 2121.4 2124.4 2124.4 

25 2,3,4-Trichlorophenol 1878 1833.0 1852.2 1836.9 4-n-Butylphenol 2026 2051.6 2057.5 2057.5 

26 1-Naphtol 1895 1900.7 1824.3 1868.0 2,3,4-Trichlorophenol 2176 2092.8 2123.9 2123.9 

27 2-Phenylphenol 1931 2038.2 2023.5 2053.2 1-Naphtol 2248 2236.0 2238.1 2238.1 

28 Catechol  1961 1979.6 2006.5 2010.9 2-Phenylphenol 2306 2319.3 2384.3 2384.3 

29 2,5-Dinitrophenol 1984 1988.4 1950.9 1966.4 Catechol 2298 2361.5 2307.5 2307.5 

30 2,4-Dinitrophenol 2021 2009.9 1965.8 1989.5 2,4-Dinitrophenol 2419 2428.3 2492.8 2492.8 

31 Hydroquinone 2099 2068.0 2034.0 2053.8 Hydroquinone 2411 2369.1 2305.1 2305.1 

32 2-Methylresorcinol 2105 2121.4 2064.8 2055.3 Pentachlorophenol 2448 2448.2 2433.2 2433.2 

33 Pentachlorophenol 2137 2137.7 2137.9 2106.4 4-Phenylphenol 2541 2532.9 2434.2 2434.2 

34 4-Phenylphenol 2148 2037.7 2022.4 2051.5 Orcinol 2464 2442.4 2361.8 2361.8 

35 Pyrogallol 2486 2547.4 2632.4 2626.1 Pyrogallol 2908 2912.6 2970.4 2970.4 

36 Phloroglucinol 2692 2631.1 2624.0 2613.0 Phloroglucinol 2994 2990.5 3004.5 3004.5 

37 3-Bromophenol 1643 1603.8 1608.5 1597.4 2-Bromophenol 1915 1907.2 1928.3 1928.3 

38 4-Bromophenol 1652 1650.4 1641.2 1648.4 4-Bromophenol 1927 1930.4 1952.7 1952.7 

39 2-Iodophenol 1720 1745.3 1727.6 1703.0 2-Iodophenol 2063 2019.5 2026.2 2026.2 

40 3-Iodophenol 1760 1767.7 1722.5 1694.9 3-Iodophenol 2068 2093.8 2069.7 2069.7 

 Test set Test set 

41 o-Cresol 1446 1468.9 1490.3 1490.8 4-Chlorophenol 1804 1838.4 1855.0 1854.9 

42 2,6-Dimethylphenol 1504 1550.3 1581.2 1567.4 4-Chloro-m-cresol 1917 1895.7 1900.7 1900.7 

43 4-Chlorophenol 1555 1609.7 1580.9 1596.8 2,3,5-Trimethylphenol 1928 1933.7 1834.3 1834.3 

44 2-n-Propylphenol 1591 1669.9 1701.4 1700.4 2-Nitrophenol 2089 2087.2 2100.0 2100.0 

45 4-Chloro-m-cresol 1665 1642.4 1662.8 1663.3 2,4,5-Trichlorophenol 2087 2080.7 2100.9 2100.9 

46 2,4,6-Trichlorophenol 1771 1831.3 1848.2 1830.6 2,5-Dinitrophenol 2375 2253.6 2453.8 2453.8 

47 4,6-Dinitro-o-cresol  2084 2085.0 2096.9 2127.9 4,6-Dinitro-o-cresol 2463 2358.8 2482.1 2482.1 

48 Orcinol 2166 2138.3 2056.4 2042.2 2-Methylresrcinol 2403 2286.3 2341.6 2341.6 

49 2-Bromophenol 1618 1604.2 1613.7 1605.5 3-Bromophenol 1903 1857.9 1959.5 1959.5 

50 4-Iodophenol 1775 1727.0 1755.1 1745.9 4-Iodophenol 2090 2104.4 2067.8 2067.8 
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and with seeking property. In present case, to decrease the

redundancy existed in the descriptors data matrix, the corre-

lations of descriptors with each other and with the tR of the

molecules were examined and descriptors which showed high

interrelation (i.e., r > 0.9) with tR and low interrelation (i.e.,

r < 0.9) with each other were detected. For each class of the

descriptor just one of them was selected for construction the

final QSRR model and the rest were deleted. In second step,

stepwise SPSS was used for variable selection. After these

process for DB-5 and DB-17columns three and four descriptors

were remained, respectively, that keeps most interpretive

information for retention time. Table-2 shows descriptors and

their coefficients that used in MLR method. A correlation

analysis was carried out to evaluate correlations between

selected descriptors with each other and with retention time

(Table 3a-b).

TABLE-3a 
CORRELATION MATRIX OF THE THREE DESCRIPTORS  

AND tR USED IN THIS WORK FOR DB-5 COLUMNa 

 hy amr x5 tR 

hy 1 -0.447 -0.302 0.759 

amr  1  0.768 0.194 

x5   1 0.296 

tR    1 

ªThe definitions of the descriptors are given in Table-2. 

 
TABLE-3b 

CORRELATION MATRIX OF THE FOUR DESCRIPTORS  
AND tR USED IN THIS WORK FOR DB-17 COLUMNª 

 hy w QZZm DSY tR 

hy 1 -0.210 -0.217  0.118 0.729 

w  1  0.398 -0.281 0.454 

QZZm   1 -0.110 0.257 

DSY    1 0.023 

tR     1 

ªThe definitions of the descriptors are given in Table-2. 

 
Artificial neural network optimization: A three-layer

neural network was used and starting network weights and

biases were randomly generated. Descriptors selected by

stepwise method were used as inputs of network and the signal

of the output node represent the retention time of phenols.

Thus, networks have three and four neurons in input layer for

DB-5 and DB-17 columns, respectively and one neuron in

output layer. The networks performance was optimized for

the number of neurons in the hidden layer (hnn), the learning

rate (lr) of back-propagation, momentum and the epoch. As

weights and biased are optimized by the back-propagation

iterative procedure, training error typically decreases, but test

error first decreases and subsequently begins to rise again,

revealing a progressive worsening of generalization ability of

the network. Thus training was stopped when the test error

reaches a minimum value. Table-4 shows the architecture and

specification of the optimized networks.

TABLE-4 
ARCHITECTURE AND SPECIFICATION OF  

THE GENERATED ANNs 

 DB-5 
Column 

DB-17 
Column 

Number of nodes in the input layer 3 4 

Number of nodes in the hidden layer 7 4 

Number of nodes in the output layer 1 1 

Learning rate 0.2 0.3 

Momentum 0.9 0.4 

Epoch 6000 5000 

Transfer function Sigmoid Sigmoid 

 
Results of artificial neural network analysis and compa-

rison with multiple linear regression and partial least

squares: The non-linear QSRR model provided by the optimal

neural networks is presented in Fig. 1(a-b) where computed

or predicted retention time values are plotted against the corres-

ponding experimental data. Fig. 2(a-b) shows a plot of residuals

versus the observed retention time values. The substantial random

pattern of this plot indicates that most of the data variance is

explained by the proposed models.

The agreement between computed and observed values

in ANN training and test sets are shown in Table-1. The statis-

tical parameters calculated for the ANN, MLR and PLS models

are presented in Table-5. Goodness of the ANN-based model

is further demonstrated by the high value of the correlation

coefficient R between calculated and observed tR values for

DB-5 and DB-17columns are (0.990, 0.985) and (0.994, 0.986)

for training and test set, respectively. For comparison, a linear

QSRR model relating retention times to the selected descriptors

were obtained by means of MLR and PLS methods. With the

purpose of MLR and PLS models built on the same subsets

was used in ANN analysis.

Multiple linear regression (MLR) is one of the most

commonly used modeling methods in QSRR. The colinearity

problem of the MLR method has been overcome through the

development of the partial least-squares (PLS) projections to

latent structures method, which has been shown to be an

efficient approach in monitoring many complex processes,

TABLE-2 
MOLECULAR DESCRIPTORS EMPLOYED FOR THE PROPOSED QSRR MODELS 

 Number Descriptor Notation Coefficient 

1 Hydrophilic factor hy 576.146 

2 Ghose-Crippen molar refractivity amr 20.376 

3 Connectivity index chi-5 x5 152.561 
DB-5 Column 

 Constant  741.198 

1 Hydrophilic factor hy 579.471 

2 Detour index w 1.733 

3 Qzz COMMA2 value / weighted by atomic masses QZZm 2.007 

4 Dipole (debyes) sum Y DSY 18.983 

DB-17 Column 

 Constant  1516.534 
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Fig. 1. Plots of predicted tR estimated by ANN for DB-5 column (a) and

ANN for DB-17 column (b) modeling versus experimental tR

compounds

reducing the high dimensional strongly cross-correlated data

to a much smaller and interpretable set of principal compo-

nents or latent variables. The number of significant factors for

the PLS algorithm was determined using the cross-validation

method. The optimum number of factors was concluded as

the first local minimum in the PRESS versus number of factors.

The best PLS models contained three and four selected

descriptors in two and four latent variables space for DB-5

and DB-17 columns, respectively.

Comparison between statistical parameters in Table-5

reveals that non-linear ANN model produced better results

with good predictive ability than linear models.

Conclusion

Quantitative structure-retention relationship analysis was

performed on a series of phenols using ANN, MLR and PLS

methods which correlate tR values of these compound to their

structural descriptors. According to the obtained results, it is

concluded that the (hy, amr, x5) for DB-5 column and (hy, w,

QZZm, DSY) for DB-17 column can be used successfully for

modeling tR property of the under study compounds.  The
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Fig. 2. Plots of residual versus experimental tR in ANN for DB-5 column

(a) and ANN for DB-17 column (b) models

statistical parameters of the built QSRR models were satisfac-

tory showing the high quality of the chosen descriptors. High

correlation coefficients and low prediction errors obtained

confirm good predictive ability of ANN model. The proposed

QSRR models with the simply calculated molecular descrip-

tors can be used to estimate the chromatographic retention

times for new compounds even in the absence of the standard

candidates.
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