Asian Journal of Chemistry; Vol. 23, No. 6 (2011), 2776-2778

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Synthesis and Crystal Structure of TeBr₂IBr

Esmaiel Soleimani^{1,*} and Liviu $M\mathrm{i} \mathrm{T} \mathrm{U}^2$

¹Inorganic Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran ²Department of Physics & Chemistry, University of Pitesti, Târgul din Vale 1, Pitesti-110040, Romania

*Corresponding author: Fax: +98 273 3335441; E-mail: essoleimani@shahroodut.ac.ir; ismaielsoleymani@yahoo.com

(Received: 28 October 2010;

Accepted: 28 February 2011)

AJC-9661

ASIAN JOURNAL

OF CHEMISTRY

The reaction of a mixture of Te, TeBr₄ and I₂ in molar ratios of 1:3:2 in a sealed evacuated ampoule at a temperature gradient range from 200°C to 180 °C yielded red crystals. The single crystal X-ray data for this compound showed that it had the TeBr₂IBr structure. In this compound, IBr is bonded to TeBr₂ and Br-I-Te has a nearly linear skeleton. The compound crystallizes in monoclinic system with a space group of P2₁/c and the lattice constants a = 16.234(2) Å, b = 11.082(4) Å, c = 15.147(3) Å, $\alpha = 90.03(1)^\circ$, $\beta = 98.58(4)^\circ$, $\gamma = 90.06(2)^\circ$.

Key Words: Adduct product, TeBr₂IBr, 3c-2e bond, Crystal structure.

INTRODUCTION

Chalcogens are the nearest elements to halogens with suitable reactivity. Although chalcogens are not metallic, but like transition metals they could form cluster compounds with chalcogen-chalcogen bonds. Compounds of Te_7^{2+} , Te_4^{4+} , Se_{10}^{2+} and Se_{17}^{2+} , S_4^{2+} and Se_{8}^{2+} , have chalcogen-chalcogen bonds¹⁻⁶.

One of the routes to polychalcogen clusters makes use of a molten mixture of chalcogen and chalcogen tetrahalide in the presence of a suitable halide ion acceptor and eventually disproportionation reactions are carried out. A good example for this type is the reaction of a mixture of Se and SeCl₄ with ZrCl₄⁷ in a sealed tube at 130 °C that gives red crystals of Se₄(ZrCl₆) containing the polychalcogen cation Se₄²⁺. In this route, iodine is also used for disproportionation behaviour⁸ in the synthesis of Te₆I₂(WCl₆) from the reaction of Te with WCl₆ that containing the cation Te₆I₂²⁺.

We have found that the reaction of Te with TeBr₄ in the presence of I_2 in a sealed evacuated tube at 180 °C, resulted in the formation of TeBr₂IBr instead of polychalcogen cation.

EXPERIMENTAL

TeBr₄ was obtained from Te and Br_2^9 and purified by sublimation. Tellurium was separated from oxidic impurities by melting and decanting. Iodine was mixed with P_4O_{10} and then sublimed after 24 h.

Synthesis of TeBr₂IBr: Te (0.383 g, 3 mmol), TeBr₄ (4.025 g, 9 mmol) and I₂ (1.523 g, 6 mmol) were placed in a glass ampoule of 15 cm length and 2 cm diameter which is evacuated and sealed. The ampoule was placed in a horizontal tube furnace and heated for 5 h at 170 °C. Then it was placed

in temperature gradient from 200 °C to 180 °C within a week red, needle shaped crystals were transported to the colder part of the ampoule. The yield was nearly quantitative.

Crystal data and refinement details: [BrITeBr₂]. TeIBr₃, M = 494.2, monoclinic, space group P2₁/c, a = 16.234(2) Å, b = 11.082(4) Å, c = 15.147(3) Å, α = 90.03(1)°, β = 98.58(4)°, γ = 90.06(2)°, V = 3053.6(5) Å³ and D_{calcd}. (Z = 4) of 2.184 Mg/m³, F(000) 484, μ (MoK_α) 11.706 mm⁻¹, crystal size: 0.35 mm × 0.20 mm × 0.25 mm, R = 0.0315, Rw = 0.0648.

Determination of the structure: Intensity data for the brown crystal with the approximate dimensions 0.35 mm × 0.20 mm × 0.25 mm were measured at 295 K on a Siemens R3m/V diffractometer using graphite monochromated MoK_{α} radiation ($\lambda = 0.71073$ Å). Accurate unit cell parameters and an orientation matrix for data collection were obtained from least-squares refinement. Intensities of 12158 unique reflections were measured, 3848 of which with I > 2 σ (I) were used in the refinement. The structure was determined using direct methods¹⁰ and subsequent difference Fourier maps and then refined on F² by a full-matrix least squares procedure using anisotropic displacement parameters for all atoms¹¹.

The final difference density map showed a maximum peak and hole of 2.215 and -2.534 e/Å³. Corrections for the Lorentz and polarization effects as well as the empirical correction for absorption using the SADABS programs were applied¹².

RESULTS AND DISCUSSION

The reaction of a mixture of Te, $TeBr_4$ and I_2 in molar ratios of 1:3:2 in a sealed evacuated ampoule at 180 °C yielded red crystals.

$Te + 3TeBr_4 + 2I_2 \Rightarrow 4TeIBr_3$

Application of single crystal X-ray diffraction on the brown crystals indicated the synthesis of a new compound with the molecular formula TeIBr₃. This compound crystallizes in monoclinic system with a space group of P2₁/c and the lattice constants a = 16.234(2) Å, b = 11.082(4) Å, c = 15.147(3) Å, $\alpha = 90.03(1)^{\circ}$, $\beta = 98.58(4)^{\circ}$, $\gamma = 90.06(2)^{\circ}$.

X-Ray crystal and molecular structure of TeIBr₃: The crystallographic data for TeIBr₃ was tabulated in Table-1. The bond lengths and bond angles for TeIBr₃ were listed in Table-2.

TABLE-1				
CRYSTAL DATA AND STRUCTURE				
REFINEMENT FOR TeBr ₂ IBr				
Empirical formula	IeiBr ₃			
Crystal colour	Red			
Formula weight	494.2			
Temperature (K)	295			
Wavelength (A)	0.71073			
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions				
a (Å) 16.234(2)				
b (Å) 11.082(4)				
c (Å) 15.147(3)				
α (°)	90.03(1)			
β(°)	98.58(4)			
γ (°)	90.06(2)			
V (Å ³)	3053.6(5)			
Z	4			
D_{calc} (Mg/m ³)	2.184			
Absorption coefficient (m m ⁻¹)	bsorption coefficient (m m ⁻¹) 11.608			
F(000)	484			
Crystal size (mm)	$0.35 \times 0.20 \times 0.25$			
Index ranges	lex ranges $-22 < h \le 22, -14 \le k \le 14, -14 \le k \le 14$			
	16 < 1 ≤ 16			
Number of reflections collected	12158			
Independent reflections	$4057 [R_{int} = 0.0483]$			
Max, and min. transmission	0.8943 and 0.3228			
Refinement method	Full matrix least-squares on			
	F^2			
Goodness-of-fit on F ²	1.075			
Final R indices [for 3789	nal R indices [for 3789 $R_1 = 0.0315, wR_2 = 0.0648$			
reflections with $I > 2\sigma(I)$]				
R indices (all data)	$R_1 = 0.0357, wR_2 = 0.0648$			
Largest difference peak and hole $(e/Å^3)$	2.215 and -2.534			

TABLE-2			
BOND LENGTHS (Å) AND BOND ANGLES (°) FOR TeBr2IBr			
Te-I	2.877(3)	Br(1)-Te- $Br(2)$	100.08(1)
I-Br(3)	2.681(4)	I-Te-Br(1)	95.43(5)
Te-Br(1)	2.432(2)	I-Te-Br(2)	97.28(5)
Te-Br(2)	2.441(2)	Te-I-Br(3)	177.54(1)

At first view, it could be gathered that TeIBr₃ was produced by the substitution of an I atom for one of the Br atoms in TeBr₄. However, the crystal structure of TeIBr₃ is quite different from that for other tellurium tetrahalides, TeX₄.

The molecular structure of TeIBr₃ is shown in Fig. 1. This compound has the abnormal molecular structure of TeBr₂IBr, in which the I atom bonded to one of the Br atoms is also

bonded to Te, while in the hypothetical structure for TeIBr₃, the I and the three Br atoms should be bonded to the central Te atom. In TeBr₂IBr, Te-I-Br with the bond angle of 177.54(1) has an approximately linear structure and TeBr₂IBr has a trigonal pyramidal configuration geometry around Te atom with the bond angles Br(1)-Te-Br(2) 100.08(1), I-Te-Br(1) 95.43(5)° and I-Te-Br(2) 97.28(5)°. The bond angles for this compound are comparable to those in $(CH_3)_2$ Se-I-I¹³, $(CH_3)_2$ Se-I-Br, $(C_6H_5)_2$ Se-I-Br¹⁴ and $(C_6H_5)_2$ Se-I-I¹⁵; the bond angle for Te-I-Br has not been reported yet.

As seen in Fig. 1, from the three Br atoms present in the structure of TeBr₂IBr, two are bonded directly to Te and the third one to the I atom. The Te-I bond length in this compound (2.877 Å) is close to that in Te₆I₂(WCl₆)₂, which is 2.76 Å¹⁶.

The I-Br bond length in this compound (2.681 Å) is greater than that in the non-coordinated IBr molecule (2.31 Å)¹⁷. The greater I-Br bond length in TeBr₂IBr could be justified using the molecular orbital theory: transfer of electron density occurs from the non-bonding molecular orbital (HOMO) in TeBr₂ to the antibonding molecular orbital σ^* (LUMO) in IBr causes which bond length of I-Br would long. Therefore, TeBr₂IBr could be regarded to be an adduct formed by the addition of the Lewis base TeBr₂ to the Lewis acid IBr.

Fig. 1. Molecular structure of Br₂TeIBr. The thermal ellipsoids are scaled to represent a probability density of 50 %

Conclusion

The reaction of a mixture of Te, TeBr₄ and I₂ in molar ratios of 1:3:2 in a sealed evacuated ampoule at 180 °C yielded red crystals of TeIBr₃. This compound has the abnormal molecular structure of TeBr₂IBr, in which the I atom bonded to one of the Br atoms is also bonded to Te. In TeBr₂IBr, Te-I-Br with the bond angle of 177.54(1) has an approximately linear structure. According to molecular orbital theory transfer of electron density from the non-bonding molecular orbital (HOMO) in TeBr₂ to the antibonding molecular orbital σ^* (LUMO) in IBr causes which bond length of I-Br would long. TeBr₂IBr could be regarded to be an adduct formed by the addition of the Lewis base TeBr₂ to the Lewis acid IBr.

ACKNOWLEDGEMENTS

One of the author (E.S.) would like to thank Dr. Tafreshi from Physics Research Laboratory of Semnan University for his cooperation and the Research Council of Shahrood University of Technology for the financial support of this work.

REFERENCES

- 1. J. Beck, Angew. Chem. Int. Ed. Engl., 30, 1128 (1991).
- R.C. Burns, R.J. Gillespie, W.-C. Luk and D.R. Slim, *Inorg. Chem.*, 18, 3086 (1979).
- R.C. Burns, W.-L. Chan, R.J. Gillespie, W.-C. Luk, J.F. Sawyer and D.R. Slim, *Inorg. Chem.*, 19, 1432 (1980).

- 4. J. Beck, A. Fisher and Z. Anorg, Allg. Chem., 623, 780 (1997).
- 5. J. Passmore, G. Sutherland and P S. White, J. Chem. Soc. Chem. Commun., 330 (1980).
- 6. R.J. Gillespie and J. Passmore, J. Chem. Soc. Chem. Commun., 1333 (1969).
- 7. J. Beck and K.-J. Schlitt, Chem. Ber., 128, 763 (1995).
- 8. J. Beck and T. Marschall, Z. Kristallogr., 210, 265 (1995).
- 9. A. Alemi, E. Soleimani and Z.A. Starikova, *Acta Chim. Slov.*, **47**, 89 (2000).
- G.M. Sheldrick, SHELXS86, Program for Crystal Structure Solution, University of Goettingen, Germany, p. 176 (1986).
- G.M. Sheldrick, SHELXS93, Program for Crystal Structure Refinement, University of Goettingen, Germany, p. 255 (1993).
- G. Ferguson, C. Glidewell and E.S. Lavender, *Acta Crystallogr.*, 55B, 591 (1999).
- S.M. Godfrey, C.A. McAuliffe, R.G. Pritchard and S. Sarwar, J. Chem. Soc. Dalton Trans., 1031 (1997).
- 14. S.M. Godfrey, C.A. McAuliffe, R.G. Pritchard and S. Sarwar, J. Chem. Soc. Dalton Trans., 3501 (1997).
- P.D. Boyle, W.I. Cross, S.M. Godfrey, C.A. McAuliffe, R.G. Pritchard and S. Teat, J. Chem. Soc. Dalton Trans., 2219 (1999).
- 16. J. Beck, Chem. Ber., 128, 23 (1995).
- C. Glidewell, E.S. Lavender, Dictionary of Inorganic Compounds, Chapman & Hall, 3, p. 2848 (1994).