

Chemical Composition and Biological Activity of the Essential Oil of Campanula olympica Boiss.

GONCA TOSUN¹, NURAN KAHRIMAN¹, KAMIL ÇOSKUNÇELEBI², HASAN GENÇ¹, SENGÜL ALPAY KARAOGLU³ and NURETTIN YAYLI^{1.*}

¹Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey ²Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey ³Department of Biology, Faculty of Arts and Sciences, Rize University, 53100 Rize, Turkey

*Corresponding author: Fax: +90 462 3253196; Tel: +90 462 3772486; E-mail: yayli@ktu.edu.tr

(Received: 10 April 2010;

Accepted: 4 February 2011)

AJC-9575

The present work describes the chemical composition and antimicrobial activity of the essential oil of *Campanula olympica* Boiss. which was isolated from the all parts of the plant by hydrodistillation and analyzed by GC-FID and GC-MS. Nineteen components representing 94.0 % of the total oil were characterized and the main components of this specie were found to be 2E,6Z-farnesol (14.8 %), 3,3-dimethyl-2[5-methoxy-3-methyl-2-pentylidenen]-1-cyclohexanone (12.1 %), dehydro aromadendrane (11.6 %), tetracosane (9.0 %), pentacosane (7.9 %), epoxy alloaromadendrene (5.9 %) and cyclohexadecanolide (5.8 %). The antimicrobial activity of the isolated essential oil of the plant was also investigated and it showed moderate antimicrobial and antifungal activities against *Escherichia coli*, *Yersinia pseudotuberculosis*, *Pseudomonas aeruginosa*, *Enterococcus faecalis*, *Staphylococcus aureus*, *Bacillus cereus*, *Mycobacterium smegmatis* and *Candida albicans*.

Key Words: Campanula olympica, Essential oil, GC-FID/MS, Antimicrobial activity.

INTRODUCTION

The genus *Campanula* L. (Campanulaceae) is represented with 113 native species, 61 of them is endemics, in Turkey^{1,2}. Some species such as *C. rapunculus* L is used in Anatolian folk medicines against constipation and wound^{3,4}. *C. olympica* Boiss. is an Transcaucasian elements and distributed mainly in north and inner Anatolia. It is a biennial or perennial herb grown specially in alpine meadows, rocky and grassy slopes of *ca.* 15-2700 m above sea level⁵. As a result of our literature search, no published record has been found for the volatile chemical composition and antimicrobial activity of the essential oil of *Campanula olympica*.

EXPERIMENTAL

Campanula olympica Boiss. was collected from Akçaabat, Trabzon-Turkey (at a height of *ca*. 450 m) in June 2009. The plant was authenticated by Coskunçelebi^{1,2,5}. Voucher specimen was deposited in the Herbarium of the Faculty of Forestry, KATO (KATO: 16650), Karadeniz Technical University, Turkey. The fresh plant was air-dried at room temperature for later analysis.

Isolation of the essential oils: The air-dried whole plant (100 g) of *C. olympica* was hydrodistilled in a Clevenger-type apparatus using cooling bath (-15 °C) system (4 h) (yield: 0.08 (v/w)). The obtained oil was extracted into in HPLC grade

n-hexane (0.5 mL), dried over anhydrous sodium sulphate and stored at 4-6 °C in a sealed brown vial.

Gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analysis: GC-FID and GC-MS analyses were done as described previously⁶.

Identification of components: Retention indices of all the components were determined by Kovats method using *n*-alkanes (C₆-C₃₂) as standards. Identification of individual components was made by comparison of their retention times with those of available analytical standards (α -pinene, eicosane, heneicosane, docosane, tricosane, tetracosane and pentacosane) and by computer search, matching mass spectral data with those held in Nist and Wiley library of mass spectra and literature comparison⁷⁻¹⁵.

Antimicrobial activity assessment: All test microorganisms were obtained from the Hifzissihha Institute of Refik Saydam (Ankara, Turkey) and were as follows: *E. coli* ATCC35218, *Y. pseudotuberculosis* ATCC911, *P. aeruginosa* ATCC43288, *E. faecalis* ATCC29212, *S. aureus* ATCC25923, *B. cereus* 709 Roma, *M. smegmatis* ATCC607 and *C. albicans* ATCC60193. The essential oil was weighed and dissolved in dimethyl sulphoxide to prepare extract stock solution of 6100 µg/mL.

Agar well diffusion method: The antimicrobial effects of the essential oil from *C. olympica* was tested quantitatively in respective broth media by using double dilution and the

minimal inhibition concentration (MIC) values (μ g/mL) were determined^{16,17}. The antibacterial and antifungal assays were performed in Mueller-Hinton broth (MH) (Difco, Detroit, MI) at pH 7.3 and buffered Yeast Nitrogen Base (Difco, Detroit, MI) at pH 7.0, respectively. The micro dilution test plates were incubated for 18-24 h at 35 °C. The *M. smegmatis* was grown for 3-5 days at 35 °C. The MIC was defined as the lowest concentration that showed no growth. Ampicillin (10 μ g), streptomycin (10 μ g) and fluconazole (5 μ g) were used as standard antibacterial and antifungal drugs, respectively. Dimethyl sulphoxide with dilution of 1:10 was used as solvent control. The results are shown in Table-3.

RESULTS AND DISCUSSION

The general chemical profile of the essential oil, the percentage content and retention indices of the constituents of *C. olympica* are summarized in Table-1. A total of 19 compounds were identified in the essential oil of *C. olympica* on the basis of a typical library search (NIST, WILEY), reference compounds and literature data⁷⁻¹⁵ with selecting only components showed matches exceeding 85 %, which represented about 94.0 % of the essential oils in *C. olympica*. The main compo-

TABLE-1 IDENTIFIED COMPONENTS IN THE ESSENTIAL OIL OF <i>C. olympica</i>							
Compounds	Area* (%)	Exp. RI**	Lit. RI				
α-Pinene***	0.2	943	939				
Nonanol	0.9	1167	1169				
2E,4E-Nonadienal	1.1	1210	1212				
Dehydro aromadendrane	11.6	1466	1463				
Chamigrene	0.8	1500	1503				
E-β-Guaiene	1.1	1501	1503				
β-Bisabolene	1.7	1504	1506				
Zonarene	5.3	1533	1530				
Spathulenol	4.3	1578	1578				
Epoxy alloaromadendrene	5.9	1640	1641				
2E,6Z-Farnesol	14.8	1745	1746				
3,3-Dimethyl-2[5-methoxy-3-	12.1	1864	MS				
methyl-2-pentylidenen]-1-							
cyclohexanone							
Cyclohexadecanolide	5.8	1933	1935				
Eicosane***	1.4	1998	2000				
Heneicosane***	1.0	2099	2100				
Docosane***	6.2	2198	2200				
Tricosane***	2.9	2297	2300				
Tetracosane***	9.0	2398	2400				
Pentacosane***	7.9	2499	2500				

*Percentage Area obtained by FID peak-area normalization. **RI calculated from retention times relative to that of *n*-alkanes (C_6 - C_{32}) on the non-polar HP-5 column. ***Identified by authentic samples.

nents of the oil were 2E,6Z-farnesol (14.8 %), 3,3-dimethyl-2[5-methoxy-3-methyl-2-pentylidenen]-1-cyclohexanone (12.1 %), dehydro aromadendrane (11.6 %), tetracosane (9.0 %), pentacosane (7.9 %), epoxy alloaromadendrene (5.9 %) and cyclohexadecanolide (5.8 %).

The chemical class distribution of the essential oil components are reported in Table-2. The compounds are classified into five classes, which are terpenoids (monoterpene hydrocarbon, sesquiterpene hydrocarbons and oxygenated sesquiterpenes), ester, aldehydes, hydrocarbons and others. As seen in Table-2, hydrocarbons (28.4 %), oxygenated sesquiterpenes (25.0 %) and sesquiterpene hydrocarbons (20.5 %) were the main constituents in the essential oil of *C. olympica*.

	•						
TABLE-2							
CHEMICAL CLASS DISTRIBUTION OF							
THE ESSENTIAL OIL FROM C. olympica*							
Constituents	Area (%)	NC*					
Terpenoids							
Monoterpene hydrocarbon	0.2	1					
Sesquiterpene hydrocarbons	20.5	5					
Oxygenated sesquiterpenes	25.0	3					
Ester	5.8	1					
Aldehyde	1.1	1					
Hydrocarbons	28.4	6					
Others	13.0	2					
Total	94.0	19					
*NC: Number of compounds							

*NC: Number of compounds.

The antimicrobial activity for the essential oil of *C. olympica* was tested *in vitro* using the agar-well diffusion method^{16,17} with the microorganisms (Table-3). The essential oil showed moderate antimicrobial and antifungal activity against *E. coli, Y. pseudotuberculosis, P. aeruginosa, E. faecalis, S. aureus, B. cereus, M. smegmatis* and *C. albicans*. The minimal inhibition concentration (MIC) values for bacterial strains for the essential oil of *C. olympica*, were from 152.2-305 µg/mL, respectively. Previously mentioned antimicrobial activities of the extract form the leaf of *Campanula betulifolia*¹⁸ showed no activity against the *E. coli, B. catarrhalis, S. aureus, B. subtilis, H. pylori, C. albicans* and *T. rubrum*, that could be due to the different extracts in the *Campanula* taxa.

ACKNOWLEDGEMENTS

This study was supported by grants from Karadeniz Technical University and State Planning Agency (DPT) of Turkey.

TABLE-3 SCREENING RESULT FOR ANTIMICROBIAL ACTIVITY OF THE ESSENTIAL OIL FROM C. olympica (ug/100 µL)									
	Stok sol.	Microorganisms and minimal inhibition concentration							
Sample	(µg/0.8	Е.	<i>Y</i> .	Р.	Е.	<i>S</i> .	В.	М.	С.
	mL)	coli	pseudotuberculosis	aeruginosa	faecalis	aureus	cereus	smegmatis	albicans
C. olympica	6100	152.2	152.2	305	305	305	> 305	152.2	152.2
Ampicillin	10	10	> 18	> 18	10	35	15	-	-
Streptomycin	10	-	-	-	-	-	-	35	-
Fluconazole	5	-	-	-	-	-	-	-	25

(-): No activity at stock solution concentration. The values are the average of three determinations.

REFERENCES

- 1. P.H. Davis, Flora of Turkey and The East Aegean Islands, Edinburgh University Pres, Edinburgh, Vol. 10 (1988).
- A. Güner, N. Özhatay, T. Ekim and K.H.C. Baser, Flora of Turkey and The East Aegean Islands, Edinburgh University Press, Edinburgh, Vol. 11 (2000).
- N. Zeybek and U. Zeybek, Farmasotik Botanik, Ege Üniversitesi Basim Evi, Izmir (1994).
- 4. T. Baytop, Therapy with Medicinal Plants, Istanbul University Publications, Nobel Tip Kitapevi, Istanbul (1999).
- J. Damboldt, In ed.: P.H. Davis, *Campanula L.* (Campanulaceae), Flora of Turkey and The East Aegean Islands, Edinburgh University Press, Edinburgh, Vol. 6, pp. 1-64 (1978).
- A. Usta, O. Üçüncü, T.B. Cansu, S. Terzioglu and N. Yayli, *Asian J. Chem.*, **21**, 6369 (2009).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy, Allured, Carol Stream, IL, USA (2004).
- H.D. Skaltsa, C. Demetzos, D. Lazari and M. Sokovic, *Phytochemistry*, 64, 743 (2003).
- O. Üçüncü, N. Yayli, C. Volga, N. Yayli and S. Terzioglu, *Asian J. Chem.*, **21**, 6569 (2009).

- D.M. Lazari, H.D. Skaltsa and T. Constantinidis, *Flav. Frag. J.*, 14, 415 (1999).
- N.Y. Iskender, N. Yayli, A. Yasar, K. Coskunçelebi and N. Yayli, *Asian J. Chem.*, 21, 6290 (2009).
- N. Yayli, A. Yasar, N. Yayli, C. Albay, Y. Asamaz, K. Coskunçelebi and S. Karaoglu, *Pharm. Biol.*, 47, 7 (2009).
- 13. N.Y. Iskender, N. Yayli, N. Yildirim, T.B. Cansu and S. Terzioglu, J. Oleo Sci., 58, 117 (2009).
- O. Üçüncü, N. Yayli, A. Yasar, S. Terzioglu and N. Yayli, *Nat. Prod. Comp.*, 3, 925 (2008).
- N. Yayli, A. Yasar, C. Güleç, A. Usta, S. Kolayli, K. Coskunçelebi and S. Karaoglu, *Phytochemistry*, 66, 1741 (2005).
- National Committee for Clinical Laboratory Sandard, Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. M26-A, 19 (18), NCCLS, Willanova, PA (1999).
- G.L. Woods, B.A. Brown-Elliott, E.P. Desmond, G.S. Hall, L. Heifets, G.E. Pfyffer, J.C. Ridderhof, R.J. Wallace Jr., N.C. Warren and F.G. Witebsky, Susceptibility Testing of Mycobacteria, Nocardiae and Other Aerobic Actinomycetes; Approved Standard, NCCLS Document M24-A, Vol. 23, p. 18 (2003).
- K. Buruk, A. Sokmen, F. Aydin and M. Erturk, *Fitoterapia*, 77, 388 (2006).

2ND INTERNATIONAL SYMPOSIUM ON HYPHENATED TECHNIQUES FOR SAMPLE PREPARATION (HTSP-2)

31 JANUARY - 1 FEBRUARY, 2012

BRUGES, BELGIUM

Contact:

Ordibo bvba, Edenlaan 26, B-2610 Wilrijk-Antwerpen, Belgium E-mail: info@ordibo.be, web site http://www.ordibo.be/