Asian Journal of Chemistry; Vol. 23, No. 5 (2011), 2131-2133

Asian Journal of Chemistry

www.asianjournalofchemistry.co.in

Synthesis and Crystal Structure of Nickel Complex Assembled from Pyridine-Carboxylate Ligand

MIN YANG¹, XIULING ZHANG^{1,2} and BAOYONG ZHU^{2,*}

¹College of Chemical Engineering, Qingdao University of Science & Technology, Shandong 266042, P.R. China ²Department of Chemistry, Dezhou University, Shandong 253023, P.R. China

*Corresponding author: E-mail: zhubaoyong@yahoo.cn

(Received: 30 July 2010;

Accepted: 24 January 2011)

AJC-9508

The pyridine carboxylato-bridged coordination polymer $[Ni(3,3-pbc)_2(H_2O)_2]_n$ (3,3-pbc=3-pyrid-3-ylbenzoic acid) has been synthesized and structurally characterized by elemental analysis, IR and X-ray diffraction. Single crystal X-ray analyses reveal that the carboxylate groups of 3,3-pbc ligand adopt one coordinated mode: *bis*-monodentate (μ_2 - η^1 : η^1) and bidentate chelating (μ_1 - η^1 : η^1) fashion. Hydrogen bonding interactions are found in compound which further extend and stabilize the coordination motifs.

Key Words: Coordination polymer, Hydrothermal synthesis, Crystal structure, Pyridine-carboxylate ligand.

INTRODUCTION

In recent years, coordination polymers and supramolecular complexes have attracted much attention, owing to their potential application as functional materials¹⁻³. It is well-known that the structural and functional information of such target materials were constructed by the metal-ligand coordination bonds or intermolecular weak interactions. In this case, the design of new types of ligands such as pyridyl and/or carboxylate groups have been proven to the most important strategy, due to their potential multiple coordination mode⁴⁻⁷. Hydrogen bonds are suitable for the design of polymeric arrangement and crystal engineering because of their important directional interactions and because they can interlink 1-D or 2-D structures into higher-dimensionality systems.

As a part of our work towards rational design and preparation of functional coordination frameworks, we selected 3pyrid-3-ylbenzoic acid as assembly ligand considering following reasons: (a) it has carboxylate oxygen atoms and nitrogen atom that provide rich coordination modes;(b) due to deprotonated carboxyl groups and pyridyl nitrogen atom, it can acts as hydrogen bond acceptor and/or hydrogen accept hydrogen bond donor. In this paper, we report a new metalorganic frameworks $\{[Ni(pbc)_2(H_2O)]\cdot H_2O\}_n$.

EXPERIMENTAL

All reagents and solvents employed were commercially available and were used as received without further purification.

Elemental analysis was carried out on a Carlo Erba 1106 fullautomatic trace organic elemental analyzer. FT-IR spectra were recorded in the 4000-400 cm⁻¹ range with a Bruker Equinox 55 FT-IR spectrometer as a dry KBr pellet.

Synthesis of {[**Ni**(**pbc**)₂(**H**₂**O**)**]·H**₂**O**}_{**n**}: A mixture of 3,3pbc (0.199 g, 1 mmol), NiCl₂·6H₂O (0.119 g, 0.5 mmol), NaOH (1.5 mmol, 0.06 g) and distilled water (18 mL) was heated in a 25 mL stainless-steel reactor with a Teflon liner 160 °C for 120 h, followed by slow cooling to room temperature. Green block crystals were obtained in 70 % yield (based on Ni). Anal. calcd. (%) for C₂₄H₂₀N₂O₆Ni: C, 58.69; H, 4.10; N, 5.70. Found (%): C, 58.21; H, 4.12; N, 5.62. IR (KBr, v_{max} , cm⁻¹): 3420, br; 1618, s; 1530, s;1390, s; 672, m; 435, m.

X-Crystallography: Suitable single crystals were selected under a polarizing microscope and fixed with epoxy cement on fine glass fibers which were mounted on a Bruker Smart 1000 CCD diffractometer with a MoK_{α} radiation ($\lambda = 0.71073$ Å) at 293(2) K. The hydrogen atoms bound to carbon were located by geometrically calculations. All non-hydrogen atoms were refined by full-matrix least-squares techniques. All calculations were performed by the SHELXTL 97 program⁸. Crystal data, intensity collection and structure refinement details are summarized in Table-1. Selected interatomic distances and bond angles are given in Table-2 CCDC: 710870.

RESULTS AND DISCUSSION

Structure description: Compound crystallizes monoclinic system space group P2₁/c. As shown in Fig. 1, it is shown

TABLE-1				
CRYSTALLOGRAPHIC DATA AND STRUCTURE				
REFINEMENT SUMMARY FOR COMPLEX				
Empirical formula	$C_{24}H_{20}N_2O_6Ni$			
Formula weight	491.13			
Crystal system space group	Monoclinic P2 ₁ /c			
Unit cell dimensions	a = 10.490(2) Å			
	b = 12.920 (3) Å			
	c = 16.074(3) Å			
	$\alpha = 118.085(10)$			
	$\beta = 104.421(10)$			
	$\gamma = 90.118(10)$			
Volume (Å ³)	2166.7(8)			
Z, calculated density (mg/m ³)	4, 1.506			
F(000)	1016			
θ range for data collection	1.95-27.73			
Limiting indices	$-12 \le h \le 13$			
	$-8 \le k \le 16$			
	$-20 \le l \le 20$			
Goodness-of-fit on F ²	0.972			
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0410$			
	$wR_2 = 0.1140$			
R indices (all data)	$R_1 = 0.0519$			
	$wR_2 = 0.1191$			
Largest diff. peak and hole $(e/Å^3)$	1.195 and -1.021			

that nickel(II) atom is coordinated by three carboxylate oxygen atoms [Ni(1)-O(1) = 2.120 (16) Å, Ni(1)-O(2) = 2.184(17) Å and Ni(1)-O(4) = 2.004(17) Å] and two nitrogen atoms [Ni(1)-N(1) = 2.109 (11) Å and Ni(1)-N(2) = 2.100(11) Å] from four different pbc⁻ ligands and one coordinated water molecule [Ni(1)-O(1W) = 2.062 (17) Å], showing a distorted octahedral geometry. In the complex, all 3,3-pbc⁻ ligands act as diconnectors to link two Ni(II) centers and adopt two coordination modes: μ_2 -N, O and μ_2 -N, O, O which connect Ni(II) to form zigzag one-dimensional chain structure viewed along the a-axis (Fig. 2). The dihedral angles are 33.05° (μ_2 -N, O) and 15.79° (μ_2 -N, O, O) between pyridine ring and phenyl ring in pbc⁻ ligand.

In the complex, there exist intermolecular hydrogen bonds (Fig. 3). The inter-chain (O-H···O) hydrogen bonds is formed between the O-H group of the coordinated water molecule and carboxylate oxygen (O2 and O3), with a H1WA...O3 distance of 1.81 Å (symmetry code: -x, 2-y, -z), a H1WB···O2 distance of 1.97 Å (symmetry code: -x, 2-y, -z) and a H2WA···O3 distance of 1.95 Å (symmetry code: -x, -1/2 + y, 1/2-z). It is no doubt that the hydrogen-bonding interactions contribute to the alignment of the complex in the crystalline state.

TABLE-2 SELECTED BOND LENGTHS (Å) AND BOND ANGLES (°)					
Bond	Dist.	Bond	Dist.	Bond	Dist.
Ni(1)-O(4)#1	2.004 (2)	Ni(1)-O(1)	2.120(2)	Ni(1)-O(2)	2.184(2)
Ni(1)-N(1)#2	2.109(1)	Ni(1)-N(2)	2.100(1)	-	-
Angle	(°)	Angle	(°)	Angle	(°)
O(4)#1-Ni(1)-O(1w)	92.88(8)	O(4)#1-Ni(1)-N(2)	90.25(7)	N(2)-Ni(1)-O(1)	99.59(6)
O(1w)- Ni(1)-N(2)	88.44(7)	O(4)#1-Ni(1)-N(1)#2	90.48(7)	O(4)#1-Ni(1)-O(2)	108.91(7)
O(1w)- Ni(1)-N(1)	176.55(6)	N(2)-Ni(1)-N(1)#2	92.35(6)	N(2)-Ni(1)-O(2)	160.77(6)
O(4)#1-Ni(1)-O(1)	170.13(7)	O(1w)- Ni(1)-O(1)	88.20(7)	O(1) -Ni(1)-O(2)	61.28(6)

Fig. 1. View of the coordination environment of Ni(II) ion for compound 2. All hydrogen atoms and lattice water molecular are omitted for clarity

Fig. 2. One-dimensional Zigzag chain along the a axis for compound ${\bf 2}$

Fig. 3. 3D Supramolecular structure formed by hydrogen bonds indicated by dashed lines for compound **2** viewed along a axis

REFERENCES

- 1. B.O. Patrick, C.L. Stevens, A. Storr and R.C. Thompson, *Polyhedron*, **24**, 2242 (2005).
- 2. Y.H. Wen, J.K. Cheng, Y.L. Feng, J. Zhang, Z.L. Li and Y.G. Yao, *Inorg. Chim. Acta*, **358**, 3347 (2005).
- 3. X.L. Wang, C. Qin, E.B. Wang and L. Xu, J. Mol. Struct., **749**, 45 (2005).
- 4. F. Guo, J. Coord. Chem., 62, 3606 (2009).
- 5. T.B. Lu and R.L. Luck, Inorg. Chim. Acta, 351, 345 (2003).
- 6. F. Guo, J. Coord. Chem., 62, 3621 (2009).
- 7. R.Q. Zhong, R.Q. Zou, M. Du, L. Jiang, T. Yamada, G. Maruta, S. Takeda and Q. Xu, *Cryst. Eng. Commun.*, **10**, 605 (2008).
- 8. G.M. Sheldrick, Acta Cryst., 64A, 112 (2008).