

Synthesis and Structure of Iron(III) Complex with N,N,O-Donor Aroylhydrazones: The Chloride Anion as Hydrogen Bond Acceptor Forming Infinite Chains

HUIYAN LIU*, FENG GAO and DEZHONG NIU

School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province, P.R. China

*Corresponding author: Fax: +86 516 83403164; Tel: +86 516 83507916; E-mail: liuhuiyan72@163.com

(Received: 17 May 2010;

Accepted: 14 January 2011)

AJC-9477

A new iron(III) complex, $[FeL_2](CI) \cdot (CH_3OH)_{0.5}$ with acyclic tridentate 5-bromo-salicylaldehyde-6-chloro-2-pyridyl hydrazone (HL) has been synthesized and structurally characterized. The crystal structure consists of chains of alternating $[FeL_2]^+$ cations and CI^- anions, linked together by N–H···CI⁻···H–N hydrogen bonds. Two tridentate monoanionic meridionally spanning ligands form a distorted octahedral N₄O₂ coordination sphere around the metal ion.

Key Words: Synthesis, Structure, Iron(III), Complex, Aroylhydrazones.

INTRODUCTION

Considerable effort is currently devoted to the investigation of the coordination chemistry of aroylhydrazones due to their chelating capability and potential pharmacological application¹⁻³. Aroylhydrazones are potential ligands duo to presence of several coordination sites. They can act as a neutral or monoanionic bidentate or tridentate ligand depending on the substituents and the reaction conditions^{4,5}. Furthermore, abilities to coordinate to metals either in keto(I) or enol(I) tautomeric form make them attractive as ligand⁵⁻¹⁵.

In this work, we described the synthesis and characterization of a iron(III) complex with 5-bromo-salicylaldehyde-6-chloro-2-pyridyl hydrazone ligand (HL) which in the deprotonated state (L^-) can coordinate a metal ion *via* the pyridine-N, the imine-N and the phenolate-O atoms. The crystal structure features infinite …cation-anion-cation… chains formed by intermolecular N–H…Cl hydrogen bonds. Each chloride anion is involved in two hydrogen bonds. In addition, the spectroscopic properties of complex have also been studied.

EXPERIMENTAL

C, N and H elemental analyses were carried out with a Varian EL elemental analyzer. IR spectra were recorded on a Bruker Tensor27 FT-IR spectrophotometer as KBr pellets. Electronic spectra were recorded on a Shimadzu 2500PC spectrophotometer. The hydrazone ligand (HL) was prepared by condensation reaction of 2-hydrazinopyridine with 5-bromosalicylaldehyde in methanol. All other chemicals and solvents used were of analytical grade available commercially and were used without further purification.

Synthesis of complex: To a solution of methanol (15 mL) of HL (0.07 g, 0.2 mmol), a methanol solution (5 mL) of FeCl₃·6H₂O (0.03 g, 0.1 mmol) was added gradually with stirring. The resulting deep brown solution was further stirred for 2 h and filtered. The deep brown crystals separated after *ca.* 4 days and were collected. Yield: 60 %. Anal. calcd. for C_{24.5}H₁₈N₆O_{2.5}Br₂Cl₃Fe (%): C, 38.79; N, 11.08; H, 2.40; Found: C, 38.65; N, 10.92; H, 2.45.

Crystal structure determination: X-ray diffraction data were collected on a Bruker Smart-1000 CCD diffractometer with graphite-monochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å) at 298(2) K. The structure was solved by direct methods and refined by full-matrix least-squares on F² with anisotropic thermal parameters for all nonhydrogen atoms. All the hydrogen atoms were located geometrically and refined isotropically. O₃ atom of methanol molecule was disordered over two positions, with site occupation factor of 0.644/0.356. The data collection and refinement details are summarized in Table-1.

RESULTS AND DISCUSSION

The structure of $[FeL_2](Cl) \cdot (CH_3OH)_{0.5}$ is illustrated in Fig. 1 with the atom numbering scheme. The asymmetric unit contains $[FeL_2]^+$ cation with chloride counterion and half methanol molecule.

In complex, the tridentate ligands bind the metal ion meridionally with pairs of pyridyl-N, phenolato-O and imine-N atoms and form a N_4O_2 coordination sphere. The bond parameters associated with the metal ion (Table-2) indicate a distorted octahedral coordination geometry. The average chelate bite angles in the five-membered rings formed by the

TABLE-1			
CRYSTAL DATA AND REFINEMENT DETAILS			
FOR [FeL ₂](Cl)·(CH ₃ OH) _{0.5}			
Empirical formula	C _{24.5} H ₁₈ N ₆ O _{2.5} Br ₂ Cl ₃ Fe		
Formula weight	758.47		
Crystal size (mm)	$0.27 \times 0.26 \times 0.12$		
Crystal system	Monoclinic		
Space group	P2(1)/c		
a (Å)	8.4986(7)		
b (Å)	20.974(2)		
c (Å)	16.5351(14)		
α (°)	90		
β (°)	95.8540(10)		
γ(°)	90		
Cellm volume (Å ³)	2932.1(5)		
Z	4		
$D_{calc} (g \text{ cm}^{-3})$	1.718		
F(000)	1496		
μ (mm ⁻¹)	3.082		
Theta range for data collection (°)	1.57 to 25.02		
Total reflections	14484		
Independent reflections	5146 (Rint = 0.0877)		
Observed reflections	3406 [I>2σ(I)]		
Goodness-of-fit on F ²	1.073		
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0615$, $wR_2 = 0.1193$		
R indices (all data)	$R_1 = 0.1503, wR_2 = 0.1335$		

Fig. 1. Structure of $[FeL_2](Cl) \cdot (CH_3OH)_{0.5}$ with the atom labeling scheme

TABLE-2 SELECTED BOND DISTANCES (Å) AND ANGLES (°)			
FOR [FeL ₂](Cl)·(CH ₃ OH) _{0.5}			
Fe(1)-N(1)	2.114(7)	Fe(1)-O(1)	1.882(5)
Fe(1)-N(3)	2.201(7)	Fe(1)-O(2)	1.897(6)
Fe(1)-N(4)	2.115(7)	N(1)-N(2)	1.377(8)
Fe(1)-N(6)	2.204(7)	N(4)-N(5)	1.396(8)
N(1)-Fe(1)-N(4)	172.8(3)	O(1)-Fe(1)-N(4)	88.4(2)
N(1)-Fe(1)-N(3)	74.5(3)	O(1)-Fe(1)-N(6)	88.0(2)
N(1)-Fe(1)-N(6)	107.4(2)	O(2)-Fe(1)-N(1)	95.2(2)
N(3)-Fe(1)-N(6)	86.7(2)	O(2)-Fe(1)-N(4)	83.8(2)
N(4)-Fe(1)-N(3)	112.5(3)	O(2)-Fe(1)-N(3)	88.7(2)
N(4)-Fe(1)-N(6)	75.2(3)	O(2)-Fe(1)-N(6)	154.8(2)
O(1)-Fe(1)-N(1)	85.0(2)	O(2)-Fe(1)-O(1)	105.4(2)
O(1)-Fe(1)-N(3)	156.2(2)	-	-

pyridine-N and the imine-N and in the six-membered rings formed by the imine-N and the phenolate-O are 107.8° and 119.8°, respectively. The five-membered rings formed by the pyridine-N and the imine-N are essentially planar. The r.m.s deviations of the five fitted atoms are 0.0405 for ring [Fe1, N1, N2, C8, N3] and 0.0561 for ring [Fe1, N4, N5, C20, N6]. The six-membered rings formed by the imine-N and the phenolate-O are also essentially planar, with the r.m.s deviations of the six fitted atoms being 0.0245 for ring [Fe1, O1, C3, C2, C1, N1] and 0.0508 for ring [Fe1, O2, C15, C14, C13, N4]. The Fe-N(pyridine), Fe--N(imine) and Fe-O(phenolate) distances observed in the complex are within the range reported for iron(II) complexes having the same coordinating atoms¹⁶⁻¹⁸.

Interestingly, the $[FeL_2]^+$ cations and the chloride anions form an alternating, infinite ...-cation-anion-cation-... chain along the b direction, as shown in Fig. 2. The chloride anion is a strong hydrogen bond acceptor^{19,20} and behaves, as a multiple acceptor to the N-H groups of hydrazine fragments of the two adjacent ligands (N2…Cl3, 3.062 Å, N2-H2…Cl3, 122.44 °; N5…Cl3, 3.090 Å, N5-H5…Cl3, 171.27°). Methanol molecule has no role in the formation of the chain, which is only connected to the bromine atom in $[FeL_2]^+$ cations through O–H…Br interactions (O3…Br2, 3.082 Å, O3-H3…Br2, 165.87°).

Fig. 2. Cation and anion disposition in the chain in the $[FeL_2](Cl) \cdot (CH_3OH)_{0.5}$

IR spectra display a broad band centred at 3200 cm⁻¹. This band is possibly due to the N-H stretch of the hydrazine fragment of the ligand^{12,14}. The strong and sharp band observed at

1613 cm⁻¹ is most likely due to the azomethine C=N stretching. The medium to strong bands in the range 1583-1458 cm⁻¹ are possibly due to the vibrations associated with the aromatic C=C fragments of the ligands¹³⁻¹⁵. The coordination through the oxygen atom is inferred from a sharp band^{14,15} of v(ph-O) at 1177 cm⁻¹.

The electronic spectrum of acetonitrile solutions exhibits several absorptions at 216, 244, 317, 341 and 427 nm. The highest energy absorptions observed in the range 216-341 nm are most likely due to ligand centred transition and the absorption at 427 nm is possibly correspond to the ligand-to-metal charge transfer transition^{3,13}.

Conclusion

A new iron(III) complex, $[FeL_2](Cl) \cdot (CH_3OH)_{0.5}$ with acyclic tridentate 5-bromo-salicylaldehyde-6-chloro-2-pyridyl hydrazone ligand (HL) has been synthesized and characterized. The X-ray structural analysis reveals that the two tridentate ligands bind the metal ion meridionally with pairs of pyridyl-N, phenolato-O and imine-N atoms and form a N₄O₂ coordination sphere. The complex features infinite …-cation-anioncation-… chain formed by intermolecular N-H…Cl hydrogen bonds.

ACKNOWLEDGEMENTS

The authors acknowledged the financial supports from Natural Science Foundation of Jiangsu Education Committee (08KJD150018) and Natural Science Foundation of Xuzhou Normal University (07PYL05).

REFERENCES

- 1. S.C. Chan, L.L. Koh, P.H. Leung, J.D. Ranford and K.Y. Sim, *Inorg. Chim. Acta*, **236**, 101 (1995).
- M. Carcell, P. Mazza, C. Pelizzi and F. Zani, J. Inorg. Biochem., 57, 43 (1995).
- 3. P. Satyanarayan and P. Samudranil, J. Chem. Soc., Dalton Trans., 2102 (2002).
- 4. R. Gup and B. Kirkan, Spectrochim. Acta, 64 A, 809 (2006).
- 5. E.W. Ainscough, A.M. Brodie, A.J. Dobbs, J.D. Ranford and J.M. Waters, *Inorg. Chim. Acta*, **267**, 27 (1998).
- B. Ji, Q. Du, K. Ding, Y. Li and Z. Zhou, *Polyhedron*, **15**, 403 (1996).
 Y.F. Yuan, L.Y. Zhang, A.G. Hu, J.T. Wang, W.Y. Liu and T.Z. Ding, *Polyhedron*, **18**, 1247 (1999).
- L.E. Sayed, M.F. Iskander, N.M. Hawash and S.S. Massoud, *Polyhe-dron*, 17, 199 (1998).
- 9. S. Das and S. Pal, J. Mol. Struct., 753, 68 (2005).
- M.F. Iskander, T.E. Khalil, R. Werner, W. Haase, I. Svoboda and H. Fuess, *Polyhedron*, **19**, 1181 (2000).
- M.F. Iskander, T.E. Khalil, W. Haase, R. Werner, I. Svoboda and H. Fuess, *Polyhedron*, **20**, 2787 (2001).
- 12. N.R. Sangeetha and S. Pal, Polyhedron, 19, 1593 (2000).
- 13. H. Liu, H. Wang, F. Gao, D. Niu and Z. Lu, *J. Coord. Chem.*, **60**, 2671 (2007).
- 14. H. Liu, Z. Lu and D. Niu, J. Coord. Chem., 61, 4040 (2008).
- 15. H. Liu, D. Niu and Z. Lu, J. Coord. Chem., 62, 3763 (2009).
- 16. W. Lin, W.J. Welsh and W.R. Harris, Inorg. Chem., 33, 884 (1994).
- M. Lanznaster, A. Neves, A.J. Bortuluzzi, B. Szpoganicz and E. Schwingel, *Inorg. Chem.*, 41, 5641 (2002).
- C. Basu, S. Chowdury, R. Banerjee, H.S. Evans and S. Mukherjee, *Polyhedron*, 26, 3617 (2007).
- G. Aullon, D. Bellamy, L. Brammer, E.A. Bruton and A.G. Orpen, *Chem. Commun.*, 653 (1998).
- J. Cancela, M.J.G. Garmendia and M. Quiros, *Inorg. Chim. Acta*, 313, 156 (2001).

7TH INTERNATIONAL SYMPOSIUM ON NOVEL MATERIALS AND THEIR SYNTHESIS

11—14 OCTOBER, 2011

SHANGHAI, CHINA

Contact: Prof. Yuping Wu, Cochairman of IUPAC NMS & FCFP, Department of Chemistry, Fudan University, Shanghai 200433, China. Tel&Fax:+86-21-5566 4223, E-mail:nms@fudan.edu.cn, wuyuping99@yahoo.com, http://www.nms-iupac.org/