

# Analysis of the Essential Oil from the Flower of *Polygonum bistorta* L. subsp. *carneum* (Koch)

NAGIHAN YILMAZ ISKENDER, CANAN ALBAY GÜLEÇ, MURAT YÜCEL, KADRIYE SINEK AND NURETTIN YAYLI\*

Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey

\*Corresponding author: Fax: +90 462 3253196; Tel: +90 462 3772486; E-mail: yayli@ktu.edu.tr

(Received: 13 March 2010;

Accepted: 10 January 2011)

AJC-9459

The composition of the volatile oil obtained from the flower of *Polygonum bistorta* L. subsp. *carneum* (Koch) Coode and Cull grown in Turkey was analyzed by GC-FID and GC-MS. Total 44 compounds were identified in the essential oil of the flower from *P. bistorta* subsp. *carneum*. Hydrocarbons were shown to be the main group of constituents (54.5 %). The major components of the oils of *P. bistorta* subsp. *carneum* were tricosane (21.3 %), hexacosane (14.0 %), hexadecanoic acid (13.2 %), heneicosane (7.7 %) and lavandulol (6.1 %). Terpenoids were the minor constituents (14.0 %, 14 compounds out of 44 components) in the oil of the *P. bistorta* subsp. *carneum*.

Key Words: Polygonum bistorta L. subsp. carneum, Essential oil, GC-FID, GC-MS.

### **INTRODUCTION**

The genus *Polygonum* L. (Polygonaceae) is represented with 38 species, nine of them is endemics, in Turkey<sup>1-3</sup>. Some species such as *P. alpinum* All. are consumed as food in Anatolia and the aerial parts of *P. aviculare* are used for staining folk clothes and carpet<sup>4</sup>. *P. bistorta* is represented with two subsp. in Turkey<sup>1-3</sup>. It is a perennial Euro Siberian elements and mainly distributed in alpine meadows of Europe, Siberia and N.E. Iran and Turkey<sup>1-3</sup>. Their root is used as Builder relieves constipation and blood in Anatolian folk medicine<sup>4</sup>.

The chemical composition of the essential oils of some Polygonum L. genus included P. alpinum L., P. cuspidatum, P. odoratum Lourand P. hydropiper Opiz<sup>5-11</sup>. The major components of the oils of P. alpinum were ethyl hexadecanoate (flower: 11.7 %, leaf: 15.0 %, stem: 21.1 %), methyl linoleate (flower: 30.7 %, leaf: 11.7 %, stem: 36.7 %) and ethyl linoleate (leaf: 25.8 %, stem: 14.7 %)<sup>5</sup>. The main components in the oil of P. cuspidatum were thiophenes (38.1 %), phenanthrenes (4.8 %), fluorenes (3.8 %), biphenyls (3.5 %), anthracenes (2.9 %) and naphthalenes  $(2.3 \%)^6$ . The essential oil of P. odoratum reveled decanal (27.7 %), dodecanal (44.1 %) and decanol (10.9 %) were the main compounds<sup>7</sup>. Four diffrent studies had shown the main components of P. hydropiper were (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, dodecanal, 3-sulfanyl-hexanal, 3-sulfanyl-hexan-1-ol<sup>8</sup>; (E)-β-farnesene (35.7 %), (E)-caryophyllene (9.2 %), (E)-nerolidol (6.9 %) and  $\alpha$ -humulene (5.9 %)<sup>9</sup>; (E)- $\beta$ -farnesene (44.1 %), phytol (10.8 %), (E)-caryophyllene (9.3 %) and (E)-nerolidol (6.9 %)<sup>10</sup>; dodecanal (3-40 %), (E)-2-hexenal (20-35 %),

decanal (4-22 %), (Z)-3-hexen-1-ol (4-31 %), hexanal (1.7-5.1 %) and  $\beta$ -caryophyllene (1.7-2.3 %)<sup>11</sup>.

Previous study on the evaluation of phenolic profiles and antioxidant activities of *P. bistorta* roots has already been reported<sup>12</sup>. However, the chemical composition of the volatile oil from the flower of *P. bistorta* subsp. *carneum* has not yet been investigated. The crude volatiles were analyzed by GC-FID and GC-MS technique<sup>13-22</sup>. The identification of the substances was performed by comparison of retention indexes on HB-5 column (determined relatively to the retention times of a series of *n*-alkanes), authentic compounds and mass spectra with literature (Nist and Wiley)<sup>13-22</sup>. Therefore, the objective of the present study is to examine the chemical composition of the essential oil from the flower of *P. bistorta* subsp. *carneum* by GC-MS.

### **EXPERIMENTAL**

*Polygonum bistorta* L. subsp. *carneum* (Koch) Coode and Cullen (Polygonaceae) was collected in July 2009 from Demirkapi village, Uzungöl, Trabzon (at heights of *ca.* 2380 m) in the northeastern part of Turkey. The plant was authenticated by Terzioglu<sup>1-3</sup>. Voucher specimen was deposited in the Herbarium of the Faculty of Forestry, KATO (KATO-11835), Karadeniz Technical University, Turkey.

**Isolation of the essential oils:** The flower was separated form the fresh plant and then grounded into small pieces. The essential oil from flower (70 g) of *P. bistorta* subsp. *carneum* was isolated by hydrodistillation in a Clevenger-type apparatus with cooling bath (-15 °C) system (4 h) (yields: 0.12 %). The obtained oil was extracted with HPLC grade *n*-hexane (0.5 mL)

and dried over anhydrous sodium sulphate and stored at 4-6 °C in a sealed brown vial.

**Gas chromatography (GC) and gas chromatographymass spectrometry (GC-MS) analysis:** GC-FID and GC-MS analyses were done as described previously<sup>5</sup>.

**Identification of compounds:** Retention indices of all the components were determined by Kovats method using *n*-alkanes (C<sub>6</sub>-C<sub>32</sub>) as standards. The identification of the GC peaks corresponding to the components of the essential oil was based on direct comparison of the retention times and mass spectral data with those for standard compounds ( $\alpha$ pinene,  $\beta$ -pinene,  $\alpha$ -terpinene, limonene,  $\alpha$ -terpineol, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, nonadecane, heneicosane, docosane, tricosane, tetracosane, pentacosane and hexacosane), computer matching with the Nist and Wiley library and by comparison of the fragmentation patterns of the mass spectra with those reported in the literature<sup>12-23</sup>.

# **RESULTS AND DISCUSSION**

Volatile components obtained by hydrodistillation from the flower of *P. bistorta* subsp. *carneum* growing in Turkey was analyzed by GC and GC/MS with HP-5 column. The compositions of the essential oil of the flower of *P. bistorta* subsp. *carneum* are listed in Table-1. The volatile oil content of *P. bistorta* subsp. *carneum* was 0.12 % (v/w) and led to identification of 44 components, representing 95.3 % of the total oil (Table-1). The main components of the oil were tricosane (21.3 %), hexacosane (14.0 %), hexadecanoic acid (13.2 %), heneicosane (7.7 %), lavandulol (6.1 %, tetracosane (5.2 %), nonanal (3.3 %) and farnesane (2.2 %). Terpenoids (14.0 %) were the third major constituents in the oil.

In the literature, volatile constituents of *P. alpinum* revealed esters (flower: 46.2 %, leaf: 59.1 %, stem: 82.5 %)

| TABLE-1<br>IDENTIFIED COMPONENTS IN THE ESSENTIAL OIL FROM |                       |                      |         |  |  |
|------------------------------------------------------------|-----------------------|----------------------|---------|--|--|
| THE FLOWER OF <i>P. bistorta</i> subsp. <i>carneum</i>     |                       |                      |         |  |  |
| Compounds                                                  | Area <sup>a</sup> (%) | Exp. RI <sup>b</sup> | Lit. RI |  |  |
| α-Pinene <sup>c</sup>                                      | 1.1                   | 940                  | 939     |  |  |
| β-Pinene <sup>c</sup>                                      | 0.8                   | 979                  | 979     |  |  |
| 2-pentyl furan                                             | 0.1                   | 995                  | 998     |  |  |
| α-Terpinene <sup>c</sup>                                   | 0.3                   | 1015                 | 1017    |  |  |
| o-Cymene                                                   | 0.2                   | 1026                 | 1026    |  |  |
| Limonene <sup>c</sup>                                      | 0.6                   | 1030                 | 1029    |  |  |
| 1-Undecene                                                 | 1.2                   | 1089                 | 1093    |  |  |
| Nonanal                                                    | 3.3                   | 1098                 | 1101    |  |  |
| Lavandulol                                                 | 6.1                   | 1181                 | 1181    |  |  |
| α-Terpineol <sup>c</sup>                                   | 0.3                   | 1192                 | 1189    |  |  |
| Dodecane <sup>c</sup>                                      | 0.2                   | 1200                 | 1200    |  |  |
| Tridecane <sup>c</sup>                                     | 0.4                   | 1300                 | 1300    |  |  |
| 2E,4E-decadienal                                           | 0.8                   | 1321                 | 1317    |  |  |
| Tetradecane <sup>c</sup>                                   | 1.0                   | 1400                 | 1400    |  |  |
| E-Caryophyllene                                            | 0.5                   | 1420                 | 1419    |  |  |
| Farnesane                                                  | 2.2                   | 1465                 | 1462    |  |  |
| ar-Curcumene                                               | 0.2                   | 1483                 | 1481    |  |  |
| γ-Curcumene                                                | 0.3                   | 1485                 | 1483    |  |  |
| Pentadecane <sup>c</sup>                                   | 0.2                   | 1501                 | 1500    |  |  |
| E,E-α-Farnesene                                            | 0.5                   | 1509                 | 1506    |  |  |
| Methyl dodecanoate                                         | 0.4                   | 1523                 | 1526    |  |  |

| trans-Calamenene                                                         | 0.2  | 1528 | 1529 |  |  |
|--------------------------------------------------------------------------|------|------|------|--|--|
| Dodecanoic acid                                                          | 0.4  | 1565 | 1567 |  |  |
| Ethyl dodecanoate                                                        | 0.3  | 1598 | 1595 |  |  |
| Hexadecane <sup>c</sup>                                                  | 0.3  | 1601 | 1600 |  |  |
| Methyl tridecanoate                                                      | 0.5  | 1633 | 1631 |  |  |
| Heptadecane <sup>c</sup>                                                 | 0.4  | 1702 | 1700 |  |  |
| Methyl tetradecanoate                                                    | 0.3  | 1725 | 1724 |  |  |
| Tetradecanoic acid                                                       | 2.7  | 1785 | 1782 |  |  |
| Hexahydrofarnesyl                                                        | 0.7  | 1847 | 1847 |  |  |
| Negadagana <sup>c</sup>                                                  | 0.9  | 1002 | 1000 |  |  |
| Nonadecane                                                               | 0.8  | 1902 | 1900 |  |  |
| Methyl hexadecanoate                                                     | 1.2  | 1922 | 1922 |  |  |
| Hexadecanoic acid                                                        | 13.2 | 1984 | 1984 |  |  |
| Methyl linoleate                                                         | 1.6  | 2095 | 2096 |  |  |
| Heneicosane <sup>c</sup>                                                 | 7.7  | 2099 | 2100 |  |  |
| Methyl-9-octadecenoate                                                   | 0.2  | 2116 | 2116 |  |  |
| Methyl octadecanoate                                                     | 0.2  | 2133 | 2130 |  |  |
| Ethyl linolenate                                                         | 1.4  | 2172 | 2170 |  |  |
| Linolenic acid                                                           | 0.2  | 2181 | 2178 |  |  |
| Docosane <sup>c</sup>                                                    | 1.5  | 2200 | 2200 |  |  |
| Tricosane <sup>c</sup>                                                   | 21.3 | 2301 | 2300 |  |  |
| Tetracosane <sup>c</sup>                                                 | 5.2  | 2400 | 2400 |  |  |
| Pentacosane <sup>c</sup>                                                 | 0.3  | 2499 | 2500 |  |  |
| Hexacosane <sup>c</sup>                                                  | 14.0 | 2600 | 2600 |  |  |
| Total isolate                                                            | 95.3 | _    | _    |  |  |
| a: BI calculated from retention times relative to that of a allegance (C |      |      |      |  |  |

a: RI calculated from retention times relative to that of *n*-alkanes ( $C_6$ - $C_{32}$ ) on the non-polar HP-5 column. b: Percentages obtained by FID peak-area normalization. c: Identified by authentic samples.

and hydrocarbons (flower: 35.9 %, leaf: 12.9 %, stem: 1.0 %) were the major components<sup>5</sup>. The main components in the oil of *P. cuspidatum* were thiophenes and aromatic hydrocarbons<sup>6</sup>. The essential oil of *P. odoratum* revealed aldehydes and alcohols were the main compounds<sup>7,11</sup>. Four different studies had shown the main compounds of *P. hydropiper* were aldehydes<sup>8</sup> and terpenoids<sup>9,10</sup>. In present case, the essential oil from the flower of *P. bistorta* subsp. *carneum* revealed ester as major components.

In general, the distribution and accumulation of many compounds in the volatile oil of *P. bistorta* subsp. *carneum* are shown (Table-2) to be considerably different in other *Polygonum* species. It is obvious from this study that the chemical composition of *P. bistorta* subsp. *carneum* demonstrates a great degree of hydrocarbons and carboxylic acid as in the other *Polygonum* species (Table-2). The compositions of the essential oils vary greatly in parts, genetic factors, environmental conditions and geographical origins.

| TABLE-2<br>CHEMICAL CLASS DISTRIBUTION IN THE ESSENTIAL<br>OILS FROM THE FLOWER OF <i>P. bistorta</i> subsp. <i>carneum</i> |          |                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------|---------------------|--|--|
| Compound class                                                                                                              | Area (%) | Number of compounds |  |  |
| Terpenoids                                                                                                                  | -        | -                   |  |  |
| Oxygenated monoterpenes                                                                                                     | 2.7      | 4                   |  |  |
| Sesquiterpene hydrocarbons                                                                                                  | 6.4      | 2                   |  |  |
| Terpene related compounds                                                                                                   | 3.9      | 6                   |  |  |
| Oxygenated sesquiterpenes                                                                                                   | 1.0      | 2                   |  |  |
| Aldehydes                                                                                                                   | 4.1      | 2                   |  |  |
| Hydrocarbons                                                                                                                | 54.5     | 14                  |  |  |
| Esters                                                                                                                      | 6.1      | 9                   |  |  |
| Carboxylic acids                                                                                                            | 16.5     | 4                   |  |  |
| Others                                                                                                                      | 0.1      | 1                   |  |  |

#### ACKNOWLEDGEMENTS

The authors thank Prof. Salih Terzioglu for characterization of the plant material. This study was supported by grants from Karadeniz Technical University Research Fund and State Planning Agency (DPT) of Turkey.

### REFERENCES

- M.J.E. Coode and J. Cullen, *Polygonum* L. in P.H. Davis, Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Vol. 2, p. 269 (1967).
- P.H. Davis, *Polygonum* L. Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Vol. 10, p. 84 (1988).
- A. Güner, N. Özhatay, T. Ekim and K.H.C. Baser, *Polygonum* L. Flora of Turkey and the East Aegean Islands, Edinburgh University Press, Vol. 11, p. 54 (2000).
- 4. T. Baytop, Therapy with Medicinal Plants, Istanbul University Publications (1984).
- O. Üçüncü, N. Yayli, A. Yasar, C. Albay, N. Yayli and S. Terzioglu, Asian J. Chem., 21, 7321 (2009).
- J. Suan, X. Chen, X. Jiang and J. Yu, *J. Chin. Mass Spec.*, 7, 242 (2006).
   M.V. Hunter, J.J. Brophy, B.J. Ralph and F.E. Bienvenu, *J. Essent. Oil*
- *Res.*, 9, 603 (1997).
  8. C. Starkenmann, L. Luca, Y. Niclass, E. Praz and D. Roguet, *J. Agric.*
- *Food Chem.*, **54**, 3067 (2006).

- 9. T. Naotaka and M. Mitsuo, *Koryo, Terupen, Oyobi Seiyu Kagaku ni Kansuru Toronkai Koen Yoshishu*, **48**, 34 (2004).
- 10. M. Mitsuo and T. Naotaka, Flav. Fragr. J., 22, 188 (2007).
- 11. J. Jiang, Flav. Fragr. J., 20, 455 (2005).
- 12. S. Demiray, M.E. Pintado and P.M.L. Castro, *Eng. Technol.*, **54**, 312 (2009).
- R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, Allured, Carol Stream, IL, USA (2004).
- N.Y. Iskender, N. Yayli, N. Yildirim, T.B. Cansu and S. Terzioglu, *J. Oleo Sci.*, 58, 117 (2009).
- N. Yayli, A. Yasar, C. Güleç, A. Usta, S. Kolayli, K. Coskunçelebi and S. Karaoglu, *Phytochemistry*, **66**, 1741 (2005).
- H.A. Priestap, C.M. Van Baren, P. Di Leo Lira, J.D. Coussio and A.L. Bandoni, *Phytochemistry*, 63, 221 (2003).
- H.D. Skaltsa, C. Demetzos, D. Lazari and M. Sokovic, *Phytochemistry*, 64, 743 (2003).
- S. Terzioglu, A. Yasar, N. Yayli, N. Yilmaz, S. Karaoglu and N. Yayli, Asian J. Chem., 20, 3277 (2008).
- O. Üçüncü, N. Yayli, A. Yasar, S. Terzioglu and N. Yayli, *Nat. Prod. Comp.*, 3, 925 (2008).
- N. Yayli, A. Yasar, N. Yayli, M. Albay and K. Coskunçelebi, *Nat. Prod.* Comp., 3, 941 (2008).
- O. Üçüncü, N. Yayli, C. Volga, N. Yayli and S. Terzioglu, *Asian J. Chem.*, 21, 6569 (2009).
- N.Y. Iskender, N. Yayli, A. Yasar, K. Coskunçelebi and N. Yayli, *Asian J. Chem.*, 21, 6290 (2009).
- N. Yayli, A. Yasar, N. Yayli, C. Albay, Y. Asamaz, K. Coskunçelebi and S. Karaoglu, *Pharm. Biol.*, 47, 7 (2009).

# THE 13TH INTERNATIONAL CONFERENCE ON MARTENSITIC TRANSFORMATIONS (ICOMAT-2011)

### 3—9 SEPTEMBER, 2011

# OSAKA, JAPAN

*Contact:* Takashi Fukuda, Osaka University Tel:+81-6-6879-7483, Fax:+81-6-6879-7485, E-mail:icomat@mat.eng.osaka-u.ac.jp, http://www.mat.eng.osaka-u.ac.jp/icomat/