

Preparation and Characterization of β-FeOOH/FeS₂ Core/Shell Structure Nanocomposites†

MING DING^{1,*}, XIAOYAN ZHOU² and JIAJIA ZHOU²

¹Key Laboratory of Powder and Energy Materials, Hefei University, Hefei 230022, Anhui Province, P.R. China ²School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, Anhui Province, P.R. China

*Corresponding author: E-mail: dingming@hfuu.edu.cn

AJC-9559

The β -FeOOH/FeS₂ core/shell structure nanocomposites were synthesized *via* a sulfuration method. The β -FeOOH nanorods were firstly functionalized as sacrificial templates then converted into β -FeOOH/FeS₂ core/shell nanocomposites using thioacetamide as a sulfur source. Morphologies of the materials were assessed by X-ray diffraction and scanning electron microscopy, while the thermal stability and magnetism properties were characterized by thermogravimetric analysis and vibrating sample magnetometer. It was found that β -FeOOH/FeS₂ core/shell nanocomposites could be obtained at the molar ratio of β -FeOOH to thioacetamide as 1:5-1:7. A possible conversion mechanism was proposed based on the experimental results.

Key Words: β-FeOOH, FeS₂, Core/shell structure, Sulfuration, Nanorods.

INTRODUCTION

The FeS₂ (pyrite) has shown promising material as a photovoltaic material for preparing thin film solar cell less than 200 nm thick, since it has an appropriate band gap (0.95 eV) and high optical absorption coefficient (α > 105 cm⁻¹ when λ < 1 µm)¹. In the past decades, extensive investigations have been carried out to develop FeS₂-based solar cell materials²⁻⁶. For example, Liu *et al.*⁷ studied FeS₂ thin films prepared by the sulfuration of Fe and Fe₃O₄. However, these studies focused on the preparation and properties of FeS₂ nanofilms and nanoparticles. To the best of our knowledge, few studies on β-FeOOH/FeS₂ core/ shell structure nanocomposites have been reported as far.

In this paper, β -FeOOH/FeS₂ core/shell nanocomposites were synthesized by the sulfuration of β -FeOOH nanorods. The morphologies, thermal properties and magnetic behaviours of the nanocomposties were investigated.

EXPERIMENTAL

Analytically pure iron(III) chloride (FeCl₃ \cdot 6H₂O), thioacetamide (TAA), ammonia and HCl were all purchased from Shanghai Chemical Reagent Co., Ltd. All the chemicals were used as received.

Preparation: A brief summary of the β -FeOOH nanorods is given here. 2.7029 g FeCl₃·6H₂O was dissolved in 100 mL distilled water and adjusted to the pH = 2. The solution was

then stirred at 80 °C for 2 h. The brown-yellow precipitate was washed using distilled water and absolute ethanol and vacuum dried at 60 °C for 6 h.

To obtain β -FeOOH/FeS₂ core/shell nanocomposites, the desired amount of β -FeOOH nanorods and thioacetamide (the molar ratio was 1:2, 1:5, 1:7 and 1:10) were put into small weighing bottles and Teflon-lined stainless steel autoclave of 100 mL capacity separately and kept at 140 °C for 8 h. The resulting product was washed using distilled water and absolute ethanol and vacuum dried at 60 °C for 4 h.

Characterization: The X-ray diffraction (XRD) data was obtained using a D/max-RA X-ray powder diffractometer equipped with a Cu-Ka source ($\lambda = 0.154060$ nm). Morphology observation of samples was performed by a S-4800 scanning electron microscope (SEM) at 20 kV. Thermogravimetric analyses (TGA) were conducted with a PE Pyris-I thermoanalyzer instrument. The vibrating sample magnetometer (VSM) was performed on a BHV-55 vibrating sample magnetometer.

RESULTS AND DISCUSSION

Fig. 1 shows the TG-DTG and DSC curves of β -FeOOH. It can be seen that the β -FeOOH undergoes a dehydration process and the phase transition in the temperature range 160-330 °C.

*Presented to the 4th Korea-China International Conference on Multi-Functional Materials and Application.

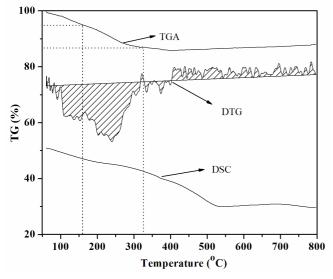
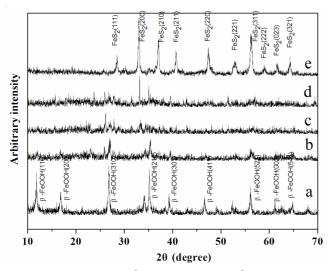
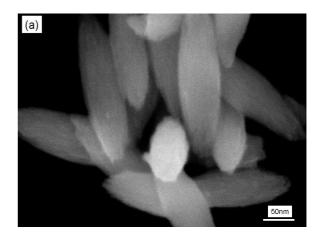
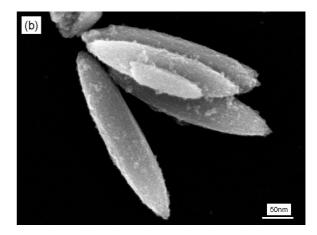
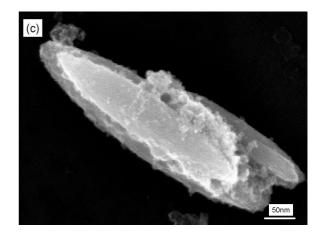


Fig. 1. TGA, DTG and DSC curves of $\beta\mbox{-}FeOOH$

Fig. 2 shows the XRD traces of β -FeOOH precursors and β -FeOOH/FeS₂ core/shell structure nanocomposites with various molar ratios of β -FeOOH to thioacetamide. Fig. 2(a) shows a typical XRD pattern of β -FeOOH. All the diffraction peaks are in good agreement with the standard PDF data of tetragonal β -FeOOH (JCPDS file 75-1594). The XRD patterns of β -FeOOH/FeS2 core/shell nanocomposites with different molar ratios (1:2, 1:5 and 1:7) of β -FeOOH to thioacetamide are shown in Fig. 2(b, c and d). Besides the β -FeOOH peaks, the characteristic diffraction peaks corresponding to cubic FeS₂ (JCPDS file 71-2219) can be observed, which indicate the formation of β -FeOOH/FeS₂ nanocomposites after the sulfidation treatment of β -FeOOH precursors. With the increasing molar ratio of β -FeOOH/TAA to 1:10, a typical XRD pattern of FeS₂ has been observed in Fig. 2(e), which suggests that β-FeOOH has completely transformed to FeS₂.


Fig. 2. XRD patterns of (a) β-FeOOH nanorods and β-FeOOH/FeS₂ core/ shell structure nanocomposites with different molar ratios of β-FeOOH to thioacetamide (b) 1:2, (c) 1:5, (d) 1:7 and (e) 1:10

SEM images of the products are shown in Fig. 3. Fig 3(a) shows the typical morphology of β -FeOOH nanorods, in which

large quantities of nanorods with diameter in the range of 60 nm and length up to 220 nm are observed. The morphology of β -FeOOH/FeS₂ nanocomposites with different molar ratios of β -FeOOH to thioacetamide are shown in Fig. 3(b, c, d and e). Fig. 3b shows that a few FeS₂ particles were attached on the surface of β -FeOOH nanorods, whereas Fig. 3(c) shows that β -FeOOH nanorods were tightly coated by FeS₂ and their surface is much rougher than that shown in Fig. 3(a), which indicates the formation of β -FeOOH/FeS₂ core/shell structure. With increasing the molar ratios, it can be seen that more and more FeS₂ particles were formed and encapsulated on the β -FeOOH surface (Fig. 3d). However, at the molar ratio 1:10, only FeS₂ nanoparticles can be observed in Fig. 3(e).

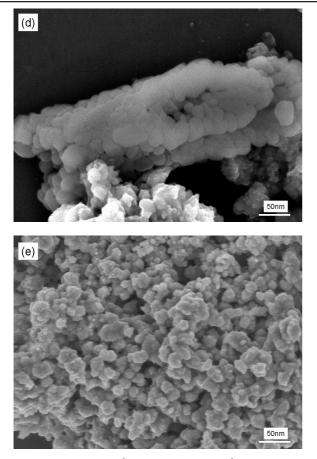


Fig. 3. SEM images of (a) β -FeOOH nanorods and β -FeOOH/FeS₂ core/ shell structure nanocomposites with different molar ratios of β -FeOOH to thioacetamide (b) 1:2, (c) 1:5, (d) 1:7 and (e) 1:10

Fig. 4 shows the TGA curves of β -FeOOH/FeS₂ core/shell nanocomposites. FeS₂ nanoparticles (Fig. 4d) exhibit the highest thermal stability compared to β -FeOOH/FeS₂ core/shell nanocomposites. Clearly, with increasing amount of thioacetamide, the nanocomposites exhibit higher starting degradation temperature, which indicates that the presence of FeS₂ can impart β -FeOOH/FeS₂ core/shell nanocomposites with higher thermal stability.

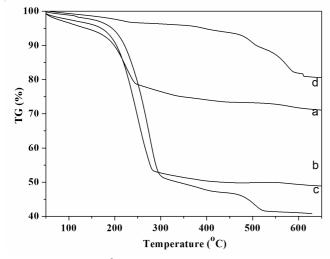
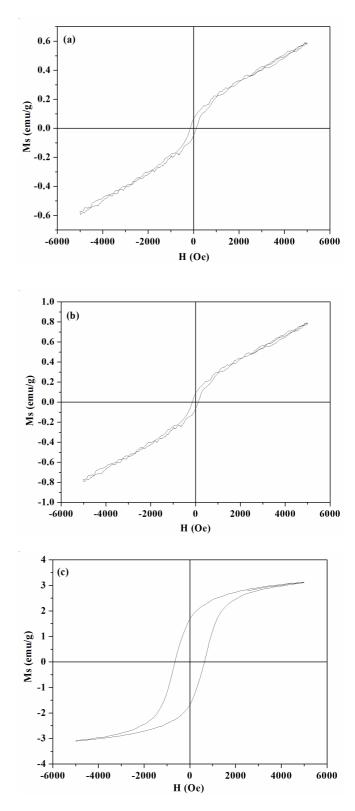



Fig. 4. TGA curves of β -FeOOH/FeS₂ core/shell structure nanocomposites with different molar ratios of β -FeOOH to thioacetamide (a) 1:2, (b) 1:5, (c) 1:7 and (d) 1:10

Fig. 5 shows the hysteresis loop-line of the products. Fig. 5(a) and (b) indicate that β -FeOOH and β -FeOOH/FeS₂ nanocomposites at β -FeOOH/FeS₂ molar ratio of 1:2 almost has no saturation magnetization. But from Fig. 5(c), (d) and (e), it can be seen that the magnetisms of the nanocomposites at the molar ratio of 1:5, 1:7 and 1:10 were 3.13, 6.33 and 6.57 emu/g, respectively. These data confirm that the magnetism of the nanocomposites enhances slightly with the increasing amount of FeS₂.

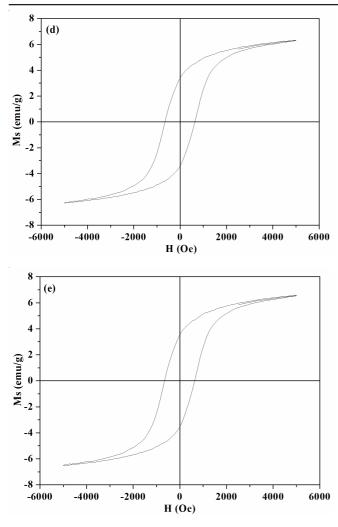


Fig. 5. VSM of (a) β -FeOOH nanorods and β -FeOOH/FeS₂ core/shell structure nanocomposites with different molar ratios of β -FeOOH to thioacetamide (b) 1:2, (c) 1:5, (d) 1:7 and (e) 1:10

The possible conversion mechanism has been proposed here according to the sulfuration of β -FeOOH. Several mechanisms have been reported to elucidate the process, including the well-known Ostwald ripening, classic and newly prevalent Kirkendall effect and inequivalent exchange of metallic atoms regarding the galvanic replacements reaction⁸⁻¹¹. In this paper, the formation of β -FeOOH/FeS₂ core/shell nanocomposites can be explained by the diffusion and consumption process, which is schemed in Fig. 6. It is known that FeS₂ is more thermodynamically stable compared to β -FeOOH, therefore when thioacetamide is added, it will decompose to generate H₂S then reacts with β -FeOOH to generate FeS₂ microencapsulated on its surface. With increasing thioacetamide content, more and more β -FeOOH will convert into FeS₂ and finally when β -FeOOH reaches absolute sulfuration, amorphous FeS₂ nanoparticles were obtained.

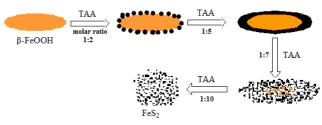


Fig. 6. Schematic illustration of the formation of β -FeOOH/FeS₂ core/shell structure nanocomposites

Conclusion

The preparation and characteristics of β -FeOOH/FeS₂ core/shell nanocomposites have been investigated. These materials can be obtained via a sulfidation process using β -FeOOH nanorods as sacrificial templates. This strategy may be extended to prepare other core/shell structured metal chalcogenides by using corresponding metal oxides with specific morphologies as precursors.

REFERENCES

- A. Ennaoui, S. Fiechter, W. Jaegermann and H. Tributsch, J. Electrochem. Soc., 133, 97 (1986).
- 2. Y. Pelovski and V. Petkova, J. Thermal Anal. Calorim., 56, 101 (1999).
- E.M. Shembel, Yu. V. Polischuk, O.V. Chervakov and D. Reisner, *Ionics*, 12, 41 (2006).
- Q. Xiao, G.Z. Qiu and W.Q. Qin, *Acta Optica Sinica*, 22, 1501 (2002).
 E. Drobner, H. Huber, G. Wachtershauser, D. Rose and K.O. Stetter,
- Nature, 346, 742 (1990).
 G.C. Chen, J.-M. Zen, F.-R.F. Fan and A.J. Bard, *J. Phys. Chem.*, 95, 3682 (1991).
- 7. Y. H. Liu, L. Hou and D.W. Fan, Chin. J. Mater. Res., 20, 301 (2006).
- 8. R. Yi, G.Z. Qiu and X.H. Liu, J. Solid State Chem., 7, 1 (2009).
- 9. C. Yu, J.T. Joong and C.Z. Hua, *Langmuir*, **21**, 1074 (2005).
- H.J. Fan, U. Gosele and M. Zacharias, *Small*, **3**, 1660 (2007).
- 11. L. Au, X.M. Lu and Y.N. Xia, Adv. Mater., 20, 2517 (2008).