

Host-Guest Complexation of Apple Antioxidant Quercetin By Linked B-Cyclodextrin Dimer

HOA-DU NGUYEN^{1,*}, DUC-TRUC PHAM¹ and STEPHEN F. LINCOLN²

¹Department of Chemistry, Vinh University, Nghe An, Vietnam ²School of Chemistry and Physics, The University of Adelaide, SA 5005, Australia

*Corresponding authors: E-mail: hoadu.nguyen@gmail.com (Hoa Du Nguyen); truc.dhv@gmail.com (Duc-Truc Pham)

(<i>Received</i> : 28 December 2009;	Accepted: 21 August 2010)	AJC-9000
In aqueous phosphate buffer at pH 7.0 (3.3 %	p ethanol, I = 0.10 mol dm ⁻³ at 298.2 K) quercetin	forms host-guest complexes with
β -cyclodextrin (β CD) and N,N'-bis(6^{A} -deoxy-6	δ ^A -β-cyclodextrinyl)urea (66βCD ₂ ur) of stoichiomet	ry β CD.Qc and 66β CD ₂ ur.Qc, the
analogous $K_1 = 537$ and 1901 dm ³ mol ⁻¹ , respec	tively, showing a good cooperative binding of two a	muli of the dimer to the guest. The
complexation of quercetin (Oc) by β -cyclodextri	n (BCD) and N, N'-bis(6 ^A -deoxy-6 ^A -B-cyclodextrin)ur	ea (66β CD ₂ ur) in D ₂ O was studied

by 2D ROESY ¹H NMR provided evidence for complexation of quercetin into βCD annuli. The models of complexes were constructed

Key Words: Host-guest complexation, Cyclodextrin, Quercetin, Fluorescence, ROESY.

INTRODUCTION

and energy minimized.

Fruits, such as apple, are the main natural antioxidant suppliers (polyphenols and flavonoids) in the human diet, which can protect against several disease¹. Quercetin (Qc, 3,3',4',5,7-pentahydroxyflavone, Fig. 1) (pK_{a1} = 7.65²) is one of the flavonoids in apple which has been considered beneficial to health including antioxidative, free radical scavenging, anticancer and antiviral activities³. To improve solubility and stability of quercetin, recent studies utilizing β -cyclodextrin (β CD, Fig. 1) or mono substituted β -cyclodextrin to form hostguest complexes^{4,5}.

Fig. 1. Structures of β-cyclodextrin, N,N'-bis(6^A-deoxy-6^A-β-cyclodextrinyl)urea, quercetin and complexation equilibrium for N,N'-bis(6^Adeoxy-6^A-β-cyclodextrinyl)urea and quercetin To have a better host-guest complexation with quercetin, this study uses a linked β -cyclodextrin dimer, which previously reported having cooperative binding with several organic dyes and improved stability constants much higher than that of β -cyclodextrin^{6,7}. The chosen dimer is *N*,*N'-bis*(6^Adeoxy-6^A- β -cyclodextrinyl)urea (66 β CD₂ur) and host-guest measurements were studied for this dimer and native mono β -cyclodextrin under the same conditions for comparison and understanding.

EXPERIMENTAL

Fluorescence spectra were recorded at 1 nm intervals using a Cary Eclipse fluorimeter with excitation and emission slit widths of 10 and 20 nm, respectively. Samples were thermostated at 298.200 ± 0.02 K. Solutions were prepared from stock solution of quercetin 2×10^{-3} mol dm⁻³ in ethanol and of β -cyclodextrin 0.011 mol dm⁻³ or 66 β CD₂ur 0.001 mol dm⁻³ in phosphate buffer at pH 7.0 and I = 0.10 mol dm⁻³. The samples contained 3.3 % ethanol. The 2D ROESY ¹H NMR spectra for the two host-guest systems studied were run on a Varian Inova 600 NMR spectrometer operating at 599.957 MHz with a delay time of 300 ms. β -Cyclodextrin (β CD) was donated by Nihon Shokuhin Kako Co. Quercetin was obtained from Fluka (98 %) and recrystallized. N,N'-bis(6^A-deoxy-6^A- β -cyclodextrinyl)urea (66 β CD₂ur)⁶ and the freeze-dried complexes of β -cyclodextrin.quercetin⁴ and *N*,*N'*-*bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea.quercetin were prepared similar as literature method.

RESULTS AND DISCUSSION

Fluorimetric studies: The relative fluorescence increases shown by quercetin on complexation by β -cyclodextrin is bestfitted by an algorithm for the formation of β -cyclodextrin. quercetin characterized by $K_1 = 537 \pm 5$ (dm³ mol⁻¹) (Fig. 2). The greater fluorescence changes induced by the linked β -cyclodextrin dimers forming N,N'- $bis(6^{A}$ -deoxy- 6^{A} - β cyclodextrinyl)urea.quercetin with $K_1 = 1901 \pm 11$ (dm³ mol⁻¹) (Fig. 3). It is seen that the stability constant of 66β CD₂ur.Qc is 3.5 times higher than that of β CD.Qc showing the cooperative binding of two β -cyclodextrin annuli of the dimer with the guest.

In the free state in 3.3 % ethanol and phosphate buffer pH = 7.0 (I = 0.1 mol dm⁻³, 298.2 K), the quercetin fluorescence maxima, λ_{max} , occur at 534 nm with relative fluorescence of 93 au (arbitrary units). The fluorescence of β -cyclodextrin. quercetin (547 nm, 192 au) is consistent with complexation changing the quercetin environment and enhancing fluorescence as a consequence of partial complexation in the β -cyclodextrin annulus. Similar in λ_{max} and increases in relative fluorescence occurs for *N*,*N'*-*bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea.quercetin (547 nm, 322 au) as a result of quercetin experiencing an increased environmental change when complexed in two β -cyclodextrin annuli.

Fig. 2. (a) Increase in the relative fluorescence of quercetin $(6.67 \times 10^{-5} \text{ mol dm}^{-3})$ with [β -cyclodextrin]total in the range 0-9.9 × 10⁻³ mol dm⁻³ at pH 7.0, I = 0.1 mol dm⁻³, 298.2 K. The excitation wavelength is 370 nm (b) Fluorescence intensities of quercetin at 550 nm *versus* differences β -cyclodextrin concentrations, data fitted by the Specfit/ 32^{8}

Fig. 3. Increase in the relative fluorescence of quercetin $(6.67 \times 10^{-5} \text{ mol} \text{ dm}^{-3})$ with $[66\beta CD_2 ur]$ total in the range $0.9.8 \times 10^{-4} \text{ mol} \text{ dm}^{-3}$ at pH 7.0, I = 0.1 mol dm⁻³, 298.2 K. The excitation wavelength is 370 nm (b) fluorescence intensities of quercetin at 550 nm *versus* differences β -cyclodextrin concentrations, data fitted by the Specfit/ 32^{8}

 β CD.Qc (Fig. 4a) and 66β CD₂ur.Qc (Fig. 4b) shows crosspeaks (enclosed in the rectangle) arising from NOE interactions between the annular protons of the β -cyclodextrin with the aromatic protons of quercetin. This indicates the formation of host-guest complexes of β CD.Qc and 66β CD₂ur.Qc. (In ROESY experiments, a NOE cross-peak between a proton of the β -cyclodextrin annulus and a proton of the guest will be observed if the protons are closer than 4 Å through space, which infers that the guest was inside the annulus)⁹.

Molecular modelling: In MM2 Chem3D¹⁰ energy minimized gas phase models of the linked β -cyclodextrin-dimers (Fig. 5), in which the β -cyclodextrin annuli are constrained to an approximately common axis by the quercetin guest, the distance from $O3^{B}-O6^{B}$ in the glucopyranose unit of β cyclodextrin is 780 pm. The distances measured from the midpoint of this distance projected into the centre of the linked β -cyclodextrin annuli of *N*,*N'-bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea is 980 pm with the angles between the planes of the two β -cyclodextrin macrocycles is *ca*. 40°. The distances measured from H6 to H4' of quercetin is 930 pm. While hydrogen bonding between the β -cyclodextrin hydroxy groups and water occurs, the structural constraints discussed above probably maintain the relative sizes of the interannular distances. Therefore, the length of guest is longer than that of β -cyclodextrin but fit well inside the linked β -cyclodextrin dimer.

Fig. 4. 2D ROESY ¹H NMR (600 MHz) spectrum of a D₂O solution (pD 7.0) equimolar at 5.0×10^{-3} mol dm⁻³ in (a) β -cyclodextrin.quercetin and (b) *N*,*N'-bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea.quercetin. The rectangle contains the cross-peaks arising from the NOE interactions between the annular protons of β -cyclodextrin and the aromatic protons of quercetin

Asian J. Chem.

Fig. 5. Energy minimized models of (a) β -cyclodextrin.quercetin (E = 28.17 KJ/mol) and (b) *N*,*N'-bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea. quercetin (E = 67.95 KJ/mol). The quercetin's atoms are in darken colours. Hydrogen atoms are omitted

Conclusion

The stability constants for the linked β -cyclodextrin dimer N,N'-*bis*(6^A-deoxy-6^A- β -cyclodextrinyl)urea with quercetin complexes is 3.5 times greater than that for β CD.Qc showing a good cooperative binding of two annuli of the dimer. The host-guest complexation of β CD and the linked β CD dimer 66 β -CD₂ur with quercetin have been studied by 2D ROESY ¹H NMR and molecular modelling. Further study for solid state of these complexes will be carried on by DSC, DTA and anticancer testing.

REFERENCES

- M.G. Hertog, D. Kromhout, C. Aravanis, H. Blackburn, R. Buzina, F. Filanza, S. Giampaoli, A. Jansen, A. Menotti and S. Nedeljkovic, *Arch. Int. Med.*, 155, 381 (1995).
- K. Lemanska, H.V.D. Woude, H. Szymusiak, M.G. Boersma, A. Gliszczynska-Swiglo, I.M.C.M. Rietjens and B. Tyrakowska, *Free Radical Res.*, 38, 639 (2004).
- 3 J. Formica and W. Regelson, Food Chem. Toxicol., 33, 1061 (1995).
- 4 T. Pralhad and K. Rajendrakumar, J. Pharm. Biomed. Anal., 34, 333 (2004).
- 5 Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow and A.H.L. Chow, J. Pharm. Sci., 94, 1079 (2005).
- 6 D.-T. Pham, P. Clements, C.J. Easton, J. Papageorgiou, B.L. May and S.F. Lincoln, *New J. Chem.*, **32**, 712 (2008).
- 7 D.-T. Pham, P. Clements, C.J. Easton, J. Papageorgiou, B.L. May and S.F. Lincoln, *Supramole. Chem.*, 21, 510 (2009).
- 8 R.A. Binstead, B. Jung and A.D. Zuberbühler, Specfit/32, Spectrum Software Associates, Marlborough, MA, USA (2000).
- 9 H. Schneider, F. Hacket, V. Rudiger and H. Ikeda, *Chem. Rev.*, 98, 1755 (1998).
- 10 CambridgeSoft Corporation, 100 CambridgePark Drive, Cambridge, MA 02140, USA.