
INTRODUCTION

The need for reliable quantitative analysis of multicom-

ponent systems has prompted many workers to develop new

instrumentation capable of quickly acquiring data from which

the identities and concentrations of the components can be

readily extracted. Recently, a video fluorometer was described1

for accomplishing this with fluorescing components. This

instrument acquires an excitation-emission matrix (EEM)

which has been shown by Warner et al., to be useful for qualita-

tive2 and quantitative3 analyses of fluorescent mixtures. The

method of least squares used by Warner et al.3 and by Sternberg

et al.4 is conceptually simple and easy to implement. For quanti-

tative multicomponent analysis, however, the method of least

squares yields predictably reliable results only if one has

knowledge of all the major constituents present. Consequently

other methods such as linear programming3, non-negative least

squares5 and factor analysis6 have been suggested as possible

algorithms. In many analytical problems one is confronted

with an analyte which contains a few known fluorescing species

of interest mixed with other fluorescing unknowns. In such

cases, it would be very convenient if one could obtain quantitative

information for the known compounds without disturbing about

the other species present. The method of rank annihilation

proposed here offers a promising approach to this problem

when combined with the video fluorometer7.
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Fluorescence spectroscopy is a versatile tool mainly used

because of its selectivity and sensitivity. Fluorescence spectra

can be recorded in difference modes such as emission, excitation,

synchronous and excitation-emission matrix (EEM). The arrange-

ment of fluorescence data in an array (i.e., first-order data)

can be analyzed with first-order calibration methods such as

partial least squares (PLS) regression. This approach has been

successfully applied to simultaneous mixture analysis8,9. How-

ever, first-order calibration methods require that both unknown

and standard samples have the same chemical and physical

characteristics, i.e., all detectable species present in the unknown

samples, including analytes and interferences, must also be

present in the standard samples. The most expensive step in

first-order multivariate calibration methods is the preparation

and analysis of the large number of standards that have to be

used for calibration. Alternatively, fluorimetric data can be

arranged in data matrices (i.e., second order data) for analysis

with second-order calibration methods, which may take advantage

of features of both excitation and emission spectra of the compound

studied. The use of fluorescence excitation-emission matrices

(EEMs) for the two orders of data is advantageous because (i)

the measurements can be made on a single instrument with

consistent channel registration, (ii) EEMs exhibit good sensi-

tivity, selectivity and bilinearity and (iii) a range of options is

available for the third order. Variation in the sample composition

is the most common approach to introducing the third order

in fluorescence EEMs10,11.



In considering the simultanous analysis of multicompo-

nent, multidimensional data sets, we have previously considered

three analytical situations. In the first, all of the components

are knowns, for which calibration data are available. Here, the

method of maximum likelihood or least squares is appropriate

for finding the quantity of each component2,12. In the past, this

approach has required excellent reproducibility between cali-

bration standards and the data obtained for the mixture. In the

second analytical situation, none of the components are known

and therefore only qualitative analysis is possible. Here, the

method of factor analysis can be applied13,14. This method

provides (a) a lower bound to the number of linearly indepen-

dent components present in the mixture and (b) estimates for

the spectral and retention vectors when low numbers of

components are present. Factor analysis approaches have the

advantage that no assumptions are made regarding the shapes

of the spectral and retention vectors, other than that they all

be positive.

In the final and most commonly encountered situation,

one is attempting to quantitate a series of known in the presence

of a variable background of unknown. For this purpose, the

method of rank annihilation has been developed15-18. When

there is one known component, the amount of that component

can be found by iteratively subtracting it from the observed

data until the rank of the remainder matrix is reduced by one.

For multiple components, the rank of the remainder matrix is

reduced by an amount equal to the number of components

being subtracted19. Lorber20 has developed a noniterative

method for multicomponent rank annihilation and Sanchez

and Kowalski21 have further generalized the method.

One of the most serious problems that can occur in classical

quantitative analysis is the presence of one or more spectral

interferent-chemical species which affect the instrument

response and which are unaccounted for in the calibration

process. Advances in chemometric methods allow quantitative

analysis in the presence of unidentified interferents if a three

way experimental data matrix is available for each sample.

This property is the so-called "second-order advantage"22 and

it is based on the earlier work done in the psychometrics

field23,24. The use of this advantage in analytical chemistry was

proposed by Ho et al.7 (rank annihilation factor analysis,

RAFA), for the multicomponent analysis of fluorescent

mixtures using excitation-emission matrix (EEM). Later,

Lorber20 and Sanchez and Kowalski21 proposed new and simple

solutions for the method of Ho et al.7 and now it is called the

generalized rank annihilation method (GRAM). The method

of rank annihilation qualitatively can be described as follows.

For a multicomponent solution emission-excitation matrix, M,

the rank, ideally, should equal thenumber of components. If

we know one of the components with EEM, N present in the

solution and if we subtract the correct amount of N from M,

the original rank of M should be reduced by one. In such an

instance, we should observe the eigenvalue of M corresponding

to N becoming zero. Because of errors in actual experimental

data, we cannot expect the eigenvalue to vanish completely.

However, it will attain a minimum. The amount of N subtracted

to achieve a minimum in the corresponding eigenvalue will

correspond to the relative concentration of the known compo-

nent in the mixture7. When both spectral and spatial vectors

are known for the pure component, standard rank annihilation

has demonstrated very accurate estimations for the concen-

trations. However, when only one of the vectors is known for

the pure component, the technique is invalid. In this case, the

method of rank annihilation with incomplete information is

useful25. Some of rank annihilation factor analysis applications

have came in below.

Rank annihilation factor analysis combined with the

optimization of kinetic parameter is adopted to resolve the

two-way kinetic-spectral data measured online from chemical

reactions. To a multi-step reaction whose intermediate process

is complicated and reaction order is fractional, the reaction

order and rate constant of the first step can be determined with-

out the knowledge of the kinetic model of the reaction26.

To two-way kinetic-spectral data measured in chemical

reactions, the pure spectrum of each reactant can be reached

while that of the intermediate usually remains unknown and

the concentration of each species in the reaction is not directly

available, but they do change conforming to certain kinetics

function. The resolving of such kind problem is similar to gray

system with unknown background, where RAFA can be success-

fully adapted. The principles for the determination of the rate

constants and absorption spectrum of each component are

deduced through a two-step consecutive reaction model and it

shows that this approach can be applicable to systems where

all three components absorb and the intermediate or the final

product does not absorb27.

EXPERIMENTAL

All fluorescence measurements were done on a cary

eclipse fluorescence spectrophotometer (Varian, Australia)

equipped with a Xenon lamp pulsed at 80 Hz. The measure-

ments were done using 1 cm quartz cell and slits widths of 5

nm for both excitation and emission monochromators. The

scan rate of the monochromator was maintained at 120 nm/

min in recording of emission and excitation-emission spectra.

The pH measurements were carried out with a Metrohm 713

pH meter (Herisau, Switzerland) equipped with a glass

electrode.

Data acquisition and data analysis were performed with

Matlab 7.1 and the m-file of RAFA. Partial least square (PLS)

analyses were carried out by using PLS-Toolbox software

version 2.0.10

Analytical-reagent grade chemicals were employed in all

experiments. Phenylalanine and tryptophane was obtained

from Sigma (USA). KOH were purchased from Merck

(Darmstadt, Germany). A stock solution of phenylalanine (5.0

× 103 µg mL-1) was prepared by dissolving 500 mg of phenyl-

alanine in 100 mL of distilled and organic free water in

volumetric flask. An aqueous stock solution of tryptophane

(100 µg mL-1) was obtained by dissolving 10 mg of this amino

acid in 100 mL of distilled and organic free water. 0.1 M of

KOH solution was also employed as a buffer.

Procedure and acquisition of data sets: First order data

(emission spectra) were recorded in the range of 278-800 nm

with 1 nm intervals using an excitation wavelength of 258 nm

for phenylalanine and 299-800 nm with 1 nm intervals using

excitation wavelength of 279 nm for tryptophane. Excitation-

emission matrices (second order data) were measured every 5
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nm in the emission range 300-800 nm and every 5 nm in the

excitation range 200-300 nm, making a total of 101 × 21 =

2121 data points.

RESULTS AND DISCUSSION

Individual calibration: Individual calibration curves

were constructed with several points as fluorescence intensity

versus amino acids concentration in the range (0.1-1.5) × 103

µg mL-1 for phenylalanine and (0.0100-0.0005) × 103 µg mL-1

for tryptophane and evaluated by linear regression. In order to

obtain the calibration curves of amino acids, we measured the

fluorescence intensity at 561 and 364 nm for phenylalanine

and tryptophane, respectively, while the excitation wavelength

was 258 and 279 nm for phenylalanine and tryptophane,

respectively. The repeatability, expressed by relative standard

deviation, the linear range, the sensitivity, the detection limits

and the correlation coefficients were obtained for phenylalanine

and tryptophane and they are presented in Table-1.

TABLE-1 

ANALYTICAL FIGURE OF MERIT FOR BOTH ANALYTES 

Phenylalanine Tryptophane Parameter 

0.35-1.45 
0.00075-
0.0045 

Dynamic linear (range/?g mL-1) 

0.9932 0.9934 Correlation coefficient 

11.6 5.4 RSD (%) 

Y = 228.96x 
+ 25.762 

Y = 14407x 
+ 430.66 

Equation of calibration curvea 
(fluorescence intensity versus  

µg mL–1 of analyte) 

a: In order to obtain the calibration curves of amino acids, we 
measured the fluorescence  intensity at 561 and 364 nm for 
phenylalanine and tryptophane, respectively, while the excitation 
wavelength was 258 and 279 nm for phenylalanine and tryptophane, 
respectively. 

 
Partial least squares (PLS): The arrangement of fluorescence

data in an array (i.e., first order data) was analyzed with partial

least square regression as a first-order calibration method.

Partial least squares was selected as a standard multivariate

calibration method for comparing and evaluating the results

of RAFA as a second-order method. However, first order calibra-

tion methods require that both unknown and standard samples

have the same chemical and physical characteristics. The most

expensive step in first-order multivariate calibration methods

is the preparation and analysis of the large number of standards

that have to be used for calibration. Fifteen binary mixtures

were selected as the calibration set (Fig. 1). The composition

of the samples was randomly designed in order to obtain non-

correlated concen-tration profiles. The correlation between

concentration vectors can be minimized if the correlation

coefficient matrix is consi-dered as the criterion. The obtained

model in the calibration step was validated with 5 synthetic

mixture sets containing the amino acids in different ranges

(Fig. 2). Fluorescence emission data from calibration set were

taken between 278 and 800 nm. The concentration range of

analytes in all synthetic samples was (0.1-1.5) × 103 µg mL-1

for phenylalanine and (0.5-100) µg mL-1 for tryptophane. The

selection of the optimum number of factors was estimated by

cross-validation, leaving out one sample at a time28. The

predicted concentration of the analytes in each sample was
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Fig. 1. Calibration of binary mixture
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Fig. 2. Prediction of binary mixture

then compared with the known concentration of them in the

respective sample and the prediction error sum-of-square

(PRESS) was calculated. This parameter was calculated each

time adding a new factor to the model and is shown in Figs. 3

and 4. A plot of the PRESS against the number of factors for

each individual component indicates a minimum value for an

optimal number of factors. For finding the smallest model (fewest

numbers of factors) the F statistics was used to carry out the

significance determination29. It was found that the optimum

number of factors was nine for both phenylalanine and trypto-

phane (Figs.3 and 4). The results obtained from spectrofluori-

metric simultaneous analysis of phenylalanine and tryptophane

by PLS method are given in Table-2. The values of root mean

square difference (RMSD), the square of the correlation coef-

ficient obtained when plotting actual versus predicted concen-

tration (R2) and the relative error of prediction (REP) for each

component in nine synthetic samples are included in order to

give an indication both of the average error in analysis and the

quality of fit of all data to a straight line.
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Fig. 4. Cross validation plots for tryptophane

TABLE-2 

STATISTICAL PARAMETER FOR PHENYLALANINE AND 
TRYPTOPHANE IN THE VALIDATION SET OF PLS MODEL 

Phenylalanine Tryptophane Statistical 
parameter Train Pred. Train Pred. 

RMSDa 0.0461                       0.0641 0.6817                      0.8571 

REPb 4.1865                       5.9864 0.0346                       0.1817 

(R2)c 0.9906                       0.9964 0.9888                       0.9809 

a: RMSD calculated according to: RMSD = 
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c: Correlation coefficient for plotting the Yreal versus Yfound. 

 
Rank annihilation factor analysis: The input of a RAFA

calculation consists of J1 × J2 bilinear data matrices. Fig. 5

shows the EEMs for 800 and 10 µg mL-1 of phenylalanine and

tryptophane, respectively, which were selected as standards

for RAFA analysis. In order to test the performance of the

proposed method, several synthetic binary mixtures of amino

acids in various concentrations were analyzed by using the

RAFA algorithm (Fig. 6). The results of estimating the concen-

tration of both amino acids for 5 binary mixtures are
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Fig. 5. EEM for 800 and 10 µg mL-1 of  phenylalanine and tryptophane

respectively, as standards for RAFA analysis
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Fig. 6. EEM of various mixtures of phenylalanine and tryptophane as

prediction set for RAFA analysis

presented in Table-3. As can be seen, the amounts added and

found were consistent for the tested mixtures. In the presence

of matrix effects which could be exist in very complex samples,

RAFA can be combined with a standard addition method. In

this work, the obtained results from standard addition method

and using the external standards had not any significant

difference. Therefore, the external standard calibration is

proposed for simultaneous determination of phenylalanine and

tryptophane. External standard calibration is simpler to imple-

ment because a single standard set is used for all unknown

samples.

TABLE-3 

RESULTS FOR ANALYSIS OF FIVE  
SYNTHETIC SAMPLES BY RAFA 

Phenylalanine (mg mL-1) Tryptophane (mg mL-1) 
Sample 

Added Found Added Found 

1 0.30 0.35 0.00100 0.00130 

2 1.50 1.57 0.00400 0.00480 

3 1.00 0.96 0.00080 0.00086 

4 0.70 0.72 0.00900 0.00880 

5 1.30 1.17 0.00030 0.00027 

RMSD (%) 6.9 8.7 
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Conclusion

The potentials of two chemometric methods for determi-

nation of two important amino acids phenylalanine and trypto-

phane in binary mixtures of them have been demonstrated.

Two types of fluorescence spectra data were used:emission

spectra as first-order data and excitation-emission spectra as

second-order data. PLS and RAFA were used for analyzing of

first-order data and second-order data, respectively. The rank

annihilation factor analysis requires only one standard sample

for quantification, which make it easier than a first-order

method such as PLS. The proposed method for simultaneous

spectrofluorimetric determination of phenylalanine and trypto-

phane is a rapid one-step procedure which only requires the

dissolution of the sample and the acquisition of excitation-

emission spectra, so it is a simple, inexpensive and fast proce-

dure which does not need a previous separation of the analytes

or other previous sample treatments.
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