
INTRODUCTION

Optical limiting (OL) phenomenon, a kind of non-linear
optical effect, is attracting much attention in the protection of
human eyes and optical sensors against high-power pulsed
lasers with the development in the laser technology1. Several
mechanisms could lead to optical limiting behaviour, such as
reverse saturable absorption (RSA), two-photon absorption
(TPA), non-linear refraction and optically induced scattering2.
Since the first discovery of optical limiting phenomenon, much
work has been done in the exploration of designing and synthe-
sizing materials with excellent optical limiting properties3-6.
Methods for predicting optical limiting properties of compounds
from their molecular structures undoubtedly would be valuable
in the search for compounds and materials showing desired
optical limiting effects. In the past, many attempts have been
made to calculate the second-order hyperpolarizability γ7-10,
but the relation between γ and optical limiting properties of
organic materials is not straightforward11.

The quantitative structure-property relationship (QSPR)
approach has become very useful in the prediction of physical
and chemical properties of organic compounds. This approach
is based on the assumption that the variation of the behaviour
of the compounds, as expressed by any measured physico-
chemical properties, can be correlated with changes in mole-
cular features of the compounds termed descriptors12-14. The
advantage of this approach lies in the fact that it requires only
the knowledge of the chemical structure and is not dependent
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on any experimental properties. Once a correlation is estab-
lished, the structure of any number of compounds with desired
properties can be predicted. Thus the QSPR approach has the
potential to decrease considerably time and effort to discover
new molecules and materials. Although the QSPR has been
successfully applied to predict many physicochemical prop-
erties9,10,15-21, there have been relatively few attempts to correlate
and predict optical limiting responses of organic compounds.
Recently, Lind et al.11 used partial least square (PLS) analysis
to develop the first QSPR for prediction of optical limiting
response of 23 organic compounds, with 6 descriptors involved.
From both a statistical and mechanistic viewpoint, inclusion
of variables into a QSPR should meet stringent criteria22. The
ratio of observations to variables should be as high as possible
and at least 5:123, while the ratio in this model is less than 5:1
(23:6 ≈ 4:1). From the statistics, if the number of variables is
comparable to the number of training patterns, the parameters
of the model may become unstable and unlikely to replicate if
the study were to be repeated. In this sense, this model is too
complex and will meet these problems.

The main steps involved in QSPR include the data
collection, molecular geometry optimization, molecular
descriptor generation, descriptor selection, model development
and validation24. The most commonly used descriptor selection
method in QSPR studies is the stepwise regression approach,
which can run forward or backward. The stepwise techniques,
however, have three main disadvantages. First, each choice



heavily affects the following choices, for example, in forward
stepwise version once one of the variables has been selected,
all the models that do not contain it will never be taken into
account. Second, the final results are expressed by a single
combination and then no choice is given to the users25. Third,
the needed time for solving a problem increases intensely with
increasing in the number of molecular descriptors.

The genetic algorithm (GA)26-28 introduced by Holland29

has been considered superior to other method of variable
selection techniques. It is a search paradigm inspired by natural
evolution where the variables are represented as genes on a
chromosome (model). It is similar to simplex optimization and
evolves from a group of random initial models (population)
with fitness scores and searches for chromosomes with better
fitness functions (response function scores) through natural
selection and the genetic operators, mutation and recombination.
The natural selection guarantees the propagation of chromo-
somes with better fitness in future populations. The genetic
algorithm combines genes from two parent chromosomes using
the genetic recombination operator to form two new chromo-
somes (children) that have a high probability of having better
fitness than their parents and also explores new response
surface (local optima) through mutation. The genetic algo-
rithms offering a combination of hill-climbing ability (natural
selection) and a stochastic method (recombination and mutation)
are very flexible because they optimize on a representation of
variables, not the variables themselves. In addition, the genetic
algorithms provide efficient optimization as they use implicit
parallelism to process information quickly and require fewer
response function evaluations than other automated numerical
optimization algorithms.

The aim of the present study is to establish a quantitative
structure-property relationship (QSPR) model that could
predict optical limiting responses of organic compounds from
their molecular structures alone and to discover the main
structural features related to the optical limiting responses. The
same data set as Lind et al.11 was used and the GA-MLR
method was employed to select variables and develop models.

EXPERIMENTAL

The molecular structures of organic compounds (Fig. 1)
and the corresponding experimental optical limiting responses
(Table-1) were taken from the article by Lind et al.11. The
geometries of the compounds were optimized to ensure that
minimum energy conformations were obtained using the
Polak-Ribiere algorithm with the semi-empirical AM1 method
in Gaussian 03 program package30. All optimizations were
carried out at a restricted Hartree-Fock level with no configu-
ration interaction. Then totally 721 molecular descriptors for
each compound were calculated on the resulting geometry
through DRAGON software31. These descriptors include
Randic molecular profiles, geometrical, RDF (Radial Distri-
bution Function), 3D-MoRSE (3D-Molecule Representation
of Structures based on Electron diffraction), WHIM (Weighted
Holistic Invariant Molecular) and GETAWAY (GEometry,
Topology and Atom-Weights AssemblY) descriptors.
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Fig. 1. Compounds' structures included in the data set

TABLE-1 
COMPOUNDS USED IN THIS STUDY WITH OBSERVED  

AND PREDICTED OL RESPONSES 
Obs. T* Obs. Iout** Pred. Iout Obs. T/Iout Pred. T/Iout 

99.8 35.7 37.5 0.0280 0.0266 
100.0 40.0 37.9 0.0250 0.0264 
100.0 33.3 36.4 0.0300 0.0275 
86.0 44.0 42.2 0.0195 0.0204 
94.3 23.4 20.3 0.0403 0.0465 
100.0 36.1 32.5 0.0277 0.0307 
96.6 21.9 20.5 0.0441 0.0471 
91.9 21.3 23.6 0.0431 0.0390 
100.0 23.4 25.0 0.0427 0.0401 
99.1 20.5 20.8 0.0483 0.0477 
100.0 23.0 24.7 0.0435 0.0405 
100.0 20.0 17.4 0.0500 0.0574 
100.0 19.8 21.3 0.0505 0.0470 
100.0 18.5 21.5 0.0541 0.0466 
98.4 7.9 9.0 0.1246 0.1097 
97.9 15.8 14.6 0.0620 0.0671 
94.1 13.8 13.6 0.0682 0.0689 
93.3 11.8 11.7 0.0791 0.0797 
93.8 39.9 38.8 0.0235 0.0242 
100.0 30.5 33.6 0.0328 0.0297 
95.2 20.7 21.7 0.0460 0.0439 
82.4 17.7 16.7 0.0466 0.0493 
98.0 29.6 27.4 0.0331 0.0357 

*Linear transmission (%) at 532 nm, **Output energy (µJ) read at an 
input energy of 150 µJ, compensated for linear absorption. 
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In order to reduce redundant and non-useful information,
constant or near constant values and descriptors found to be
highly correlated pairwise (one of any two descriptors with a
correlation greater than 0.9932) were excluded in a pre-reduction
step. Thus 432 molecular descriptors underwent subsequent
descriptor selection.

The GA-MLR was used for variable selection and model
development. The size of the population was 50, the probability
of crossover 0.5, the probability of mutation 0.1 and the number
of evolution generations 200. The quality of the model was
scored with the R2, the adjusted R2, the leave-one-out (LOO)
cross-validated R2, the standard error of estimation s, the F
ratio values and the p values corresponding to 95 % confi-
dence level.

The adjusted R2 is calculated from
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where N = total number of samples in the training set and M =
number of descriptors involved in the correlation. The adjusted
R2 is a better measure of the proportion of variance in the data
explained by the correlation than R2 (especially for correlations
developed using small datasets) because R2 is somewhat sensi-
tive to changes in N and M. The adjusted R2 corrects for the
artificiality introduced when M approaches N through the use
of a penalty function which scales the result.

A variance inflation factor (VIF) was calculated to test if
multicollinearities existed among the descriptors, which is
defined as

2
jR1

1
VIF

−
= (2)

where 2
jR  is the squared correlation coefficient between the

jth coefficient regressed against all the other descriptors in the
model. Models would not be accepted if they contain descriptors
with variance inflation factor above a value of five33.

RESULTS AND DISCUSSION

Genetic algorithm based multivariate linear regression
(GA-MLR) was employed to select variables and develop
models, relying on the evolutionary operations of "crossover
and mutation" to select optimal combinations of descriptors
capable of explaining property variation among the data set.
It is clear that univariant correlations between Iout and different
descriptors have a small value for the correlation coefficient,
which indicates that Iout is not linearly correlated with any of
the molecular descriptors. From a statistical viewpoint the ratio
of the number of samples (N) to the number of descriptors
(M) should not be too low. Usually, it is recommended that
N/M ≥ 5. In the situation of this work, with 23 samples, four
descriptors were selected. The final correlation equation is the
following:

Iout = 41.018 - 0.799 × RDF025v - 11.680 × Mor27u
- 12.824 × H3m + 10.546 × R5e (3)

N = 23, R = 0.977, R2 = 0.955, Radj
2 = 0.945, RCV

2 = 0.923, s =
2.28, F = 94.633, p = 0. 000 000

Here, RDF025v is the radial distribution function - 2.5/
weighted by atomic van der Waals volumes34; Mor27u is the

3D-MoRSE signal 27/unweighted35,36; H3m is the H
autocorrelation of lag 3/weighted by atomic masses37,38 and
R5e is the R autocorrelation of lag 5/weighted by atomic
Sanderson electronegativities37,38, respectively (Table-2).

TABLE-2 
STATISTICAL CHARACTERISTICS OF  
DESCRIPTORS IN THE FINAL MODEL 

Descriptor Descriptor 
type 

X DX t-Test p-
Value VIF 

Constant  41.018 1.709 23.999 0.000 
000  

RDF025v RDF 
descriptors 

-0.799 0.083 -9.635 0.000 
000 

1.685 

Mor27u 3D-MoRSE 
descriptors 

-11.680 2.130 -5.483 0.000 
033 

1.709 

H3m GETAWAY 
descriptors -12.824 1.381 -9.287 0.000 

000 1.084 

R5e GETAWAY 
descriptors 

10.546 1.700 6.202 0.000 
007 

1.206 

 

In general, the larger the magnitude of the F ratio, the
better the model predicts the property values in the training
set. The large F ratio of 94.633 indicates that eqn. 3 does an
excellent job of predicting the Iout values in the training set.
Eqn. 3 has an adjusted R2 value of 0.945, which indicates good
agreement between the correlation and the variation in the
data. The cross-validated correlation coefficient R2

CV = 0.923
illustrates the stability of the model by focusing on the sensi-
tivity of the model to the elimination of any single data point.
The characteristics and interactions of the four descriptors are
given in Tables 2 and 3. The t-values indicate that all the
descriptors are highly significant. The variance inflation factor
values and the interactions suggest that these descriptors are
weakly correlated with each other. Thus, the model can be
regarded as an optimal regression equation. The predicted
results for the Iout values from eqn. 3 are shown in Table-1 and
Fig. 2. The calculated optical limiting responses (T/Iout values)
are also given in Table-1 and Fig. 3. The goodness-of-fit
parameters for the T/Iout values are R2 = 0.960 and R2

CV = 0.931,
respectively, which are much better than the corresponding
values of the model derived by Lind et al.11 (R2 = 0.557 and
R2

CV = 0.454), indicating that the data set is described relatively
well by these four descriptors and that this model can be
expected to be a better predictor of optical limiting responses
of organic compounds. Randomization experiments were perfor-
med to prove the possible existence of fortuitous correlations.
Only low R2 and R2

CV values were obtained, indicating that
the good results of the original model are not due to a chance
correlation or structural dependency of the data set.

TABLE-3 
INTERACTIONS BETWEEN DESCRIPTORS AND Iout 

 RDF025v Mor27u H3m R5e Iout 
RDF025v 1     
Mor27u 0.536 1    
H3m 0.022 -0.222 1   
R5e 0.234 -0.162 0.119 1  
Iout -0.752 -0.644 -0.379 0.196 1 

 
By interpreting the descriptors involved in eqn. 3, it is

possible to gain some insights into the factors that may affect
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Fig. 2. Predicted versus observed values of Iout with the final model (R2 =
0.955)
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Fig. 3. Predicted T/Iout values (calculated from predicted Iout values) versus

observed values of T/Iout (R2 = 0.960)

the Iout values. According to the t-test (Table-2), the most signi-
ficant descriptor appearing in the QSPR model is the descriptor
RDF025v, which decreases the Iout values. RDF025v is one of
the RDF descriptors which have recently been proposed based
on a radial distribution function. The RDF descriptors can be
interpreted as the probability distribution of finding an atom
in a spherical volume of radius r. The general form of the radial
distribution function is represented by:

∑ ∑
−
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1ij

)rr(
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where f is a scaling factor (assumed equal to one in the
calculations), wi and wj are characteristic properties of the
atoms i and j (including unweighted, masses, Van Der Waals
volumes, Sanderson electronegativities and polarizabilities),
rij = interatomic distance and nAT = number of atoms in the
molecule34. RDFrw is generally calculated at a number of
discrete points with defined intervals. Besides information
about interatomic distances in the entire molecule, RDF25v
provides further information about atomic van der Waals
volumes. The negative sign of RDF25v indicates that organic
compounds with greater volumes would have smaller Iout values

and thus higher optical limiting responses. The contributions
of this descriptor in optical limiting responses are in agreement
with the contributions that one would expect for the conjugation
length of molecules as larger organic compounds with optical
limiting properties usually exhibit longer conjugation.

The second significant descriptor in the QSPR model is
Mor27u, which receives a negative regression coefficient.
Mor27u is a 3D representation of molecular structures based
on electron diffraction descriptor (3D-MoRSE descriptor)35,36

which is calculated by summing atomic weights viewed by a
different angular scattering function. The values of these
descriptor functions are calculated at 32 evenly distributed
values of scattering angle(s) in the range of 0-31 Å-1 from the
three dimensional atomic coordinates of a molecule. The 3D-
MoRSE descriptor is calculated using following expression
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where nAT is the number of atoms, s = scattering angle, rij is
the interatomic distance, wi and wj are atomic properties of ith
and jth atom, respectively. The value and sign of the 3D-
MoRSE descriptor depend, to a large extent, on the values of
s and rij. Thus, it could not be concluded that certain descriptor
has a specific effect on Iout values, either negative or positive,
only taking into account the coefficient sign of the descriptor
in the present model. When the coefficient and the descriptor
have the same sign, the contribution of the descriptor is positive,
else, negative.

There are two GETAWAY descriptors (H3m and R5e)
appearing in the QSPR model. The GETAWAY descriptors37,38

have recently been proposed as chemical structure descriptors
derived from a new representation of molecular structure, the
molecular influence matrix. These descriptors, as based on
spatial autocorrelation, encode information on the effective
position of substituents and fragments in the molecular space.
Moreover, they are independent of molecule alignment and,
to some extent, account also for information on molecular size
and shape as well as for specific atomic properties. H3m and
R5e are calculated by eqns. 6 and 7, respectively, where nAT
= number of atoms, hii and hjj are the leverages of ith and jth
atom, mi and mj are their atomic masses, ei and ej are their
atomic Sanderson electronegativities, rij = interatomic distance,
dij = topological distance, δ(3; dij; hij) is a Dirac-δ function (δ
= 1 if dij = 3 and hij > 0, zero otherwise) and δ(5, dij) is a Dirac-
δ function (δ = 1 if dij = 5, zero otherwise).
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The negative sign of H3m in the QSPR model indicates
that compounds with larger masses would have smaller Iout

values and thus higher optical limiting responses. The coeffi-
cient of R5e in eqn.3 is positive, meaning that compounds
containing atoms with greater electronegativities would possess
larger Iout and thus lower optical limiting responses.

Iout

T/Iout
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Conclusion

In this paper, a successful quantitative structure-property
relationship model was reported for the prediction of optical
limiting responses of organic compounds. The R2 of the
correlation for T/Iout values was 0.960, the RCV

2 was 0.931 and
the standard error was 0.00462. The model presented here relies
solely on descriptors derived from the molecular structures
and thus it is applicable to regular organic compounds. There-
fore, this quantitative structure-property relationship model
should be useful in the development of new optical limiting
compounds.
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