
INTRODUCTION

Angiogenesis, the formation of new blood vessel from an
existing vascular network1-3, is an important physiological
process that is involved in embryonic development, follicular
growth and wound healing4. This process is also implicated in
the pathogenesis of several diseases including diabetic retino-
pathy, rheumatoid arthritis, psoriasis, growth and the metastasis
of solid tumor5-8.

Angiogenesis plays a vital role in tumor growth, which
cannot grow beyond a certain critical size until they develop
new blood vessels to provide oxygen and nutrients.

Tumor angiogenesis is a complex process in which tumor
cells in response to hypoxia9 secrete a number of stimulatory
cytokines of which the vascular endothelial growth factor
(VEGF) plays a key role10,11. The biological effects of VEGF
are mediated by two receptors tyrosine kinase, VEGF-R1 (also
known as Flt-1) and VEGFR-2 (also known as flk-1/KDR,
fetal liver kinase-1/kinase domain-containing receptor)12,13. The
binding of VEGF to VEGFR-1 and VEGFR-2 receptors at the
endothelial cell (EC) surface triggers a number of intracellular
signaling events that lead to increase proliferation, migration
and survival of the EC14-17. Recently, it has been demonstrated
that VEGFR-2 is the major mediator of vascular endothelial
cell mitogenesis, angiogenesis and microvascular perme-
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ability18-22. Then the direct inhibition of the VEGFR-2 kinase
activity will result in the reduction of tumor angiogenesis and
the suppression of tumor growth23-27. One such approach for
obtaining VEGFR-2 inhibition involves using small molecules
to block adenosine triphosphate (ATP) binding to the intra-
cellular kinase domain of the receptor, resulting in diminished
VEGF signal transduction. Inhibitors of VEGFR-2 have there-
fore become a major focus of much research organization.
Last decade, several classes of small molecule-based VEGFR-2
kinase inhibitors merged as promising anti-angiogenic agents
for possible treatment against a wide variety of cancers28-34.
Recently, two small molecule drugs that inhibit VEGFR-2
kinase, Sorafenib (BAY-43-9006) and Sunitinib (SU-11248)35-37

were approved by the FDA for renal and gastrointestinal
cancer.

Quantitative structure activity relationship at three dimen-
sional levels (3D-QSAR) is a useful tool for developing new
drug with higher activity. In addition 3D-QSAR techniques,
such as comparative field analysis (CoMFA)38 and comparative
similarity analysis (CoMSIA)39 are used in drug design to help
understanding about the drug-receptor interaction.

Several applications of 3D-QSAR for the drug design have
been published40-45. Studies on the VEGFR-2 inhibitors are
limited to one kind of inhibitors, one reason is the difficulty



of aligning compounds which have differences in structure.
3D-QSAR studies that covered more different kinds of ligands
lead to more useful information about the influence of different
physico-chemical and structural parameters on the inhibitory
activity.

The aim of this work is to develop robust models using
three different kinds of ligands. To address such powerful
models, we carried out CoMFA and CoMSIA studies on 45
KDR inhibitors belonging to three types of reported VEGFR-2
inhibitors. These models would offer utility to design a new
VEGFR-2 inhibitor with improved efficiency.

EXPERIMENTAL

A data set composed of 45 KDR inhibitors and their in-
hibitory activity which covered nearly four logs units (pIC50 =
5.33-9.00), was taken from literature47-49. Forty five reversibly
ATP-competitive inhibitors of KDR PTK, belonging to three
types of KDR inhibitors. They are phenylaminoquinazolines,
anilinophthalazine and dianilinopyrimidine. The total set was
randomly divided into two subsets: a training set of 37
compounds for generating the 3D-QSAR models and test set
of 8 compounds for validating the quality of models. The
structure of the KDR inhibitors and their activities are shown
in Table-1.
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TABLE-1 
STRUCTURE AND ACTIVITY OF THE 45 INHIBITORS,  

T1, T2, T3 … T8 ARE THE TEST SET 
R’ R pIC50 Comp. 

1 2 3 4   
1 F Cl H H 4-Pyridyl-N(Me)-(CH2)2O 8.22 
2 F Cl H H MeN(CH2CH2)2CH-O 5.82 
3 F Cl OH H MeN(CH2CH2)2CH-CH2O 8.10 
4 F Me OH H MeN(CH2CH2)2CH-CH2O 8.15 
5 F Br H F MeN(CH2CH2)2CH-CH2O 8.00 

T1 F Br H F HN(CH2CH2)2CH-CH2O 7.82 
6 F Br H H MeN(CH2CH2)2CH-CH2O 7.40 
7 F Cl H H MeO(CH2)2O 8.15 
8 F Br H H 4-Me-piperazinyl-(CH2)3O 8.05 

T2 F Cl H H 4-Morpholinyl-(CH2)3O 8.05 
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Fig. 1. Binding mode of inhibitor 38

this is why we chose the active conformation of one molecule
of our data base which was established and described by relied
on the model of complex KDR/ molecule 16 proposed by
Sammond et al.47, Fig. 2.

Fig. 2. VEGFR2 kinase inhibitor 16 bound in the enzyme active site as
proposed based on homology modeling

Molecular docking: In order to reproduce this model and
to get the active structure of molecule 16, the 3D structure of
the inhibitor 38 was extracted from the binding site of KDR
and aligned with the molecule 16; taking as a point of over-
lapping, oxygen and nitrogen urea. The result of the superim-
position is showed in Fig. 3. The molecule 16 has been docked
into the binding site of KDR. After adding all the necessary
hydrogen this complex has been minimized using MMFF94
force field with MMFF94 charges and convergence criterion
of 0.05 kcal/mol. Indeed, in this complex, molecule 16 adopts

Fig. 3. Fit of molecule 16 and the inhibitor 38
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The 3D structure of these compounds was constructed
using the molecular modeling package Sybil 7.2, Tripos, Inc.,
St. Louis. Mo). The geometries of the inhibitors were optimized
using MMFF94 force field, using an 8 Å non bond cutoff and
an energy convergence gradient value of 0.005 kcal/ mol Å.

VEGFR2 structure: In 3D-QSAR studies, the key step
is the alignment of molecules. This alignment can be on a
rigid active molecule or more generally on a ligand with known
active conformation. This is the case when we have the structure
of the receptor in complex with the ligand determined by
X-Rays diffraction. In this case the conformation of the ligand
is used for the alignment of the other molecules of the study.
In present work, we used the X-ray crystal structure of KDR
kinase in complex with 4-amino-furo-[2,3-d]-pyrimidine (mole-
cule 38) which was recovered from Protein Data Bank, entry
code 1YWN. This three dimensional structure of the ligand in
the binding pocket can determine the main protein-ligand
interactions, Fig. 1 represents these interactions. But the ligand
is structurally very distant from the molecules of our study,
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a conformation similar to the model proposed by Sammond
et al.47, the atoms of the molecule 16 interacts with the same
residues and the distance between the atoms involved in
hydrogen bonds is around 1.7 Å (Fig. 4). Moreover the overlay
reflects the existence of common interactions with molecule
16 and ligand 38, namely those concerning residues Glu 883,
Cys 917 this is because the two molecules are positioned in
the same region of the pocket.

Fig. 4. Binding mode of molecule 16

Because of the good superimposition of the molecule 16

with the ligand and its good activity (pIC50 = 8.4) we chose
molecule 16 as the basis and the template for all lines to present
study.

Alignment procedure: A proper alignment of the
structure is critical to obtain valid 3D-QSAR models, it's very
important that all compounds are aligned in pharmacological
active orientation. To obtain a consistent alignment, molecule
16 was selected as the template for the molecular alignment
since it exhibits high affinity with KDR (pIC50 = 8.4). To work
with conformations close to the active conformations, the mole-
cules of the family of phenylamino-quinazoline which have
side chains with unknown orientation were first docked into
the binding site to avoid steric interactions with residues of
the active site. After the minimization of the complex obtained,
the molecules of this family were extracted, minimized and
aligned on the molecule 16 taking the five points corres-
ponding to atoms and aromatics centers involved in KDR-
ligand interactions.

The molecules of the second and third family (anilino-
phthalazines and dianilinopyrimidine urea) were aligned on
the molecule 16 taking the same points than previous ones
(Fig. 5).
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Fig. 5. Common atoms used for the alignment

The result of the alignment of all molecules is shown in
Fig. 6.

Fig. 6. Alignment of all the compounds

We have also verified that the conformers obtained after
the fit are stable by comparing their energy to the energy of
the conformers which have the lowest energy obtained after
the molecular optimization. For all molecules, the conformations
are located in the area of the low energy.

QSAR analysis: To construct good predictive 3D-QSAR
models and to evaluate the contributions of steric, electrostatic
and hydrophobic effects on the activities of VEGFR2 inhibitors,
CoMFA38 and CoMSIA39 analyses were performed on the
molecules of the training set.

CoMFA: CoMFA (Comparative molecular field analysis)
was performed to evaluate the effects of steric and electrostatic
fields on the biological activity of the compounds.

After superposition of all the molecules, a three-dimensional
cubic lattice with 2 Å grid spacing was generated automatically
around the molecules to ensure that the grid extended the
molecular dimensions by 4 Å in all directions. Next, the steric
field energies were calculated using an sp3 carbon probe with
van der Waals radius of 1.52 Å and a + 1 charge as the electro-
static probe. Energies were truncated to 30 kcal mol-1.
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CoMSIA: Comparative molecular similarity index analysis
(CoMSIA) introduced by Klebe in 1994 was employed to gain
insight into how steric, electrostatic, hydrophobic and hydrogen-
bond interactions influence the activity of the inhibitors. Compa-
rative molecular similarity index analysis descriptors were
derived by the same lattice box used for the CoMFA calculations.
All five CoMSIA similarity index fields (steric, electrostatic,
hydrophobic, hydrogen-bond donor and hydrogen-bond acceptor)
were evaluated using the sp3 carbon probe. The CoMSIA simi-
larity indices were calculated between the grid point and each
atom of the molecule using a Gaussian function.

Partial least square analysis: Because of the large number
of variables generated by the calculation of the fields, it is not
possible to correlate these variables with the biological activity
according to the method of multi linear regression (MLR).
That is the reason that PLS method was performed to correlate
the 3D-QSAR fields with the inhibitory activity values. The
fields were used as the independent variables and the pIC50

values as the dependant variables.
At the beginning of the 3D-QSAR study and in order to

reduce the number of variables, a principal component analysis
is applied to all the data. The principal components are linear
combinations of explanatory variables, the number of principal
components was determined by leave-one-out cross-validation
(LOO) procedure50 in which each of the molecules is excluded
from the data set and its activity is predicted by the model
derived from the remaining compounds in the set. This process
is repeated until all molecules are used. The optimum number
of components (CN) corresponds to the highest cross validated
q2 and the lowest standard error of prediction (SEP), q2 value
should be greater than 0.5 to indicate significant predictive
power.

The model chosen based on the above criteria will be subse-
quently submitted to a non cross validated analysis in order to
define the final form of the model that can be used for predicting
the activity.

In this analysis other criteria are determined to decide the
quality of the fit; the coefficient of determination r2, the residual
standard deviation s, the F test of Fisher and the probability P.
The squared correlation coefficient r2, which is also used in
(multiple) linear regression, is between zero and one and
expresses the quality of the PLS analysis. It indicates the
proportion of the variation in the dependent variable (here the
activity) that is explained by the regression equation and its
value should be as close to one as possible. However, r2

expresses the quality of the data fit rather than the quality of
prediction. At the end of the calculations, the final model
emerges. It’s a graphical representation that shows the regions
where the spatial variations of steric and electrostatic properties
influence the affinity of ligand for the receptor.

Validation: The series of the molecules of the test set
which were not used for the establishment of the model, (training
set) were used for the validation of the model. The parameter
used to evaluate the predictive capacity of the models CoMFA
and CoMSIA is the r2 predictive51, this one is calculated on
the whole of the molecules of the test set for each model by
using the formula.

SD
Press

1predictive r2 −=

where, SD = sum of the squared deviations between the
biological activities of the test set and mean activities of the
training molecules and PRESS = sum of squared deviation
between predicted and actual activity values for every molecule
of the test set.

1 RESULTS AND DISCUSSION

CoMFA and CoMSIA analyses CoMFA analysis: In
this study, we established 2 models. CoMFA I and CoMFA II,
The statistical parameters for each model are summarized in
Table-2.

TABLE-2 
STATISTICAL PARAMETERS OF THE CoMFA MODEL 

PLS analysis CoMFA I CoMFA II 
Number of compound 37 33a 
q2a 0.246 0.620 
SEPb 0.972 0.712 
CNc 6 5 
r2d 0.948 0.985 
Sre 0.256 0.142 
Ff 90.355 285.588 
Contributions (steric/electrostatic) 0.415/0.585 0.460/0.540 
a: Cross-validation correlation coefficient. b: The optimum number of 
components. c: Non-cross-validation correlation coefficient. d: 
Standard error of estimate. e: F-ratio. 

 The Model CoMFA I was constructed with the whole of
the molecules of training set produced q2 value of 0.244 lower
than 0.5 indicating that this model is not predictive. After
removing molecules 2, 15, 22 and 37 from the training set, we
obtained a predictive model, CoMFA II, with higher cross-
validated q2 value of 0.62. For model CoMFA II, the squared
correlation coefficient r2 which indicates the proportion of the
biological activity which is explained by the model is 0.985,
implies that the model CoMFA II explains 98.5 % of the
variation of the biological activity. In this model, the steric
descriptors explain approximately 46 % of the variance, while
the electrostatic descriptors explain 54 % of the variance. These
values suggest a good statistical correlation and satisfactory
predictive ability of the CoMFA II model Table-2: statistical
parameters of the CoMFA model.

In order to assess the predictive power of the model
CoMFA II, the deviation between the experimental and the
predicted activities has been calculated for training set as well
as test set, the values are presented in Table-3.

CoMSIA analysis: For the CoMSIA analysis, 5 physico-
chemical properties were used including, the steric fields (S),
electrostatic (E), hydrophobic fields (H), donors (D) and
acceptors (A) of hydrogen bonds. The values of these fields
were calculated using a probe charged +1. Several models
combining the various variables fields were established.

As for the CoMFA analysis, the first CoMSIA analysis
carried out on the whole of training set (37 molecules) was
not satisfactory. The molecules 2, 15, 22 and 37 which deviated
from the model were removed from the data base.

It should be noted that these molecules are identical to
the outliers of the CoMFA analysis. Among the CoMSIA
models obtained we retained the models corresponding to q2

> 0.6. The statistical analysis carried out on the various
CoMSIA models is summarized in Table-4.
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TABLE-3 
EXPERIMENTAL, PREDICTED ACTIVITIES AND RESIDUALS 

OF THE COMPOUNDS USING CoMFA II AND THE BEST 
MODEL FROM CoMSIA 

Predicted pIC50 Residuals 
Comp. 

No. 
Experimental      

pIC50 CoMFA 
II 

CoMSIA 
(HAD) 

CoMFA 
II 

CoMSIA 
(HAD) 

1 8.22 8.13 8.10 0.09 0.12 
2 5.82 Outlier outlier Outlier Outlier 
3 8.10 8.15 8.04 -0.05 0.06 
4 8.15 7.91 8.00 0.24 0.15 
5 8.00 8.02 7.93 -0.02 0.07 
6 7.40 7.69 7.72 -0.29 -0.32 
7 8.15 8.08 8.15 0.06 0.00 
8 8.05 8.07 8.02 -0.02 0.03 
9 5.77 5.76 5.78 0.01 -0.01 
10 5.85 5.89 5.84 -0.037 0.01 
11 5.33 5.39 5.19 -0.07 0.14 
12 6.62 6.49 6.61 0.12 0.01 
13 6.42 6.57 6.69 -0.15 -0.27 
14 6.70 6.59 6.70 0.10 0.00 
15 7.43 Outlier outlier Outlier Outlier 
16 8.40 8.48 8.52 -0.09 -0.12 
17 7.74 7.54 7.96 0.21 -0.22 
18 6.75 6.63 6.63 0.12 0.12 
19 7.02 7.14 7.21 -0.12 -0.19 
20 6.57 6.59 6.61 -0.03 -0.04 
21 6.49 6.43 6.45 0.06 0.04 
22 7.46 Outlier outlier Outlier Outlier 
23 8.70 8.51 8.26 0.18 0.44 
24 9.00 9.21 8.99 -0.21 0.01 
25 9.00 9.07 9.27 -0.07 -0.27 
26 8.52 8.46 8.94 0.05 -0.42 
27 8.70 8.64 8.61 0.06 0.09 
28 8.70 8.52 8.78 0.17 -0.08 
29 7.19 7.30 7.10 -0.12 0.09 
30 7.96 7.98 7.83 -0.03 0.13 
31 7.77 7.80 7.53 -0.04 0.24 
32 7.59 7.54 7.27 0.04 0.07 
33 7.54 7.71 7.52 -0.17 0.02 
34 7.51 7.54 7.22 -0.04 0.29 
35 6.17 6.02 6.24 0.155 -0.07 
36 5.51 5.64 6.08 -0.14 -0.57 
37 6.82 Outlier outlier Outlier Outlier 
T1 7.82 7.89 7.77 -0.07 0.05 
T2 8.05 7.84 7.88 0.21 0.17 
T3 6.06 6.07 6.33 -0.01 -0.27 
T4 7.40 6.69 6.67 0.71 0.73 
T5 6.93 7.21 6.53 -0.28 0.4 
T6 8.30 8.08 8.86 0.22 -0.56 
T7 8.22 8.11 8.39 0.11 -0.17 
T8 6.00 6.49 5.93 -0.48 0.07 

 
Validation of the 3D-QSAR models: In order to select

the most predictive model and to evaluate the predictive
capacity of the models CoMFA and CoMSIA on the whole of
compounds of the test set, we calculated r2 predictive for each
model by using the formula (1) described previously

r2 predictive = 1 - Press/SD (1)

By examining Table-5, it is noticed that the model CoMFA
II and models which include the hydrophobic field are the
most predictive models. Moreover with only the hydrophobic
field the model is able to predict in a correct way the values of

TABLE-5 
VALUES OF r2 PREDICTIVE FOR THE BEST  

MODELS CoMFA AND CoMSIA 
Model r2 Predictive 

CoMFA II* 0.84 
CoMSIA  

H 0.54 
HS 0.62 
EH 0.67 
DH 0.71 
AH 0.79 

SHA 0.72 
EHA 0.78 
HSE 0.67 

HDA* 0.81 
EHD 0.73 
SHD 0.71 

EHDA 0.78 
SEHA 0.74 
SEHD 0.72 
SHDA 0.79 

SEHDA 0.77 
H: Hydrophobic field. D: Hydrogen bond donor field. A: Hydrogen 
bond acceptor field. S: Steric field. E: Electrostatic field. *: Best 
models 

 
the activity. The most predictive CoMSIA model is the one
which include the hydrophobic field, the H-bond donor and
acceptor (r2 predictive) yielded of 0.81.

We also carried out a linear regression between the experi-
mental activity and that predicted by the models CoMFA II
and CoMSIA (Fig. 7).
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Fig. 7. Correlation between the experimental and predicted activities of
(A) CoMFA II and (b) CoMSIA (HAD) model for the training and
test set

A good correlation between the predicted activities and
the experimental ones was observed.

Graphical interpretation of the results: The CoMFA
and CoMSIA steric, electrostatic and H-bonding fields from
the final non-cross-validated analysis were plotted as three-
dimension coloured contour maps in Figs. 8 and 9. These maps
show regions where differences in molecular fields are associated
with differences in biological activity.
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(a)

(b)
Fig. 8. CoMFA contour maps in combination with inhibitor 16 (a) the steric

fields distribution (b) the electrostatic fields distribution

(a)

(b)

(c)

Fig. 9. CoMSIA (HAD) contour maps in combination with inhibitor 16
(a) the hydrophobic fields distribution (b) the H-bond donor
distribution (c) H-bond acceptor fields distribution

CoMFA Contour maps: The CoMFA model is a graphic
model, in which one can visualize the space areas where
variations of the structural properties i.e., properties steric and
electrostatic influence the affinity of the ligands for the receptor,
Fig. 8. Green contours represent regions of high steric tolerance

TABLE-4 
STATISTICAL PARAMETERS OF CoMSIA MODELS 

Cross validated 
analysis 

Non crossvalidated 
analysis Contributions 

Fields 
NC q2 SEP r2 S F Steric Electrostatic Hydrophobic 

H-Bond 
donor 

H-Bond 
acceptor 

Hydrophobic 5 0.648 0.673 0.935 0.289 77.800   1   
Steric-hydrophobic 5 0.657 0.664 0.946 0.264 94.519 0.321  0.679   
Electrostatic-hydrophobic 6 0.616 0.716 0.979 0.167 203.385  0.512 0.488   
Hydrophobic-H-bond donor 5 0.663 0.650 0.952 0.249 106.865   0.670 0.330  
Hydrophobic-H-bond acceptor 6 0.664 0.670 0.961 0.229 101.091   0.521  0.479 
Hydrophobic-steric-electrostatic 6 0.665 0.669 0.983 0.153 243.422 0.233 0.336 0.431   
Hydrophobic-H-bond donor-
acceptor 

6 0.665 0.679 0.960 0.232 103.377   0.416 0.194 0.390 

Stéric-hydrophobic-H-bond donor 5 0.660 0.661 0.965 0.212 148.803 0.245  0.483 0.272  
Stéric-hydrophobic-H-bond donor-
acceptor 6 0.633 0.700 0.972 0.192 151.967 0.156  0.346 0.179 0.319 

Stéric-hydrophobic -H-bond-
acceptor 

6 0.640 0.693 0.973 0.191 154.585 0.164  0.426  0.390 

Electrostatic-hydrophobic-H- bond 
donor 

5 0.662 0.659 0.974 0.148 198.722  0.411 0.375 0.214  

Electrostatic-hydrophobic-H-bond 
acceptor 

6 0.605 0.726 0.979 0.168 201.634  0.348 0.369  0.283 

Electrostatic-hydrophobic-H-bond 
donnor-acceptor 

6 0.633 0.700 0.980 0.162 215.437  0.307 0.296 0.167 0.230 

Stéric-électrostatic-hydrophobic-H-
bond donor 

6 0.674 0.660 0.984 0.147 265.073 0.156 0.349 0.303 0.193  

Stéric-électrostatic-hydrophobic-H-
bond acceptor 6 0.628 0.705 0.983 0.151 249.547 0.144 0.303 0.311  0.242 

Stéric-électrostatic-hydrophobic-H-
bond donnor-acceptor 

6 0.641 0.693 0.984 0.148 261.519 0.119 0.273 0.254 0.153 0.201 
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(80 % contribution), while the yellow contours represent
regions of low steric bulk tolerance (20 % contribution). The
increase in positive charge is favourable in blue regions while
increase in negative charge is favoured in red region.

Electrostatic contours of CoMFA (Fig. 8b) show red contours
enclosing the urea region indicate that high electron density is
expected to increase the activity. Whereas, the blue contours
surrounding the sulphuric group suggest that in this region a
group with low electron density is expected to increase the
activity. The contributions from the steric and electrostatic
fields for the present model are 0.46/0.54, indicating that the
variations in binding affinity are dominated by electrostatic
interactions.

CoMSIA contour maps: As for CoMFA model, CoMSIA
model selected, HAD, shown in Fig. 9, is a graphical model
which indicates regions in 3D space around the molecules
where changes in physicochemical properties are predicted to
increase or decrease the biological activity.

The hydrophobic contour map of CoMSIA model, is
shown in Fig. 9a. The yellow (contribution level of 80 %) and
gray (contribution 20 %), indicate the region where hydro-
phobic and hydrophilic groups were preferred, respectively.
The yellow contour map enclosing the aromatic attached to
the urea indicates that a hydrophobic groups would be
favourable for binding activity. This region which forms the
bottom of the pocket is surrounded and formed by hydrophobic
residues, Leu 887, Ile 890, Val 897 and Val 896 which form a
hydrophobic binding pocket.

The large gray contour map surrounding the sulfone
indicates that the hydrophobic group at this position would
decrease the binding affinity. This area is the entrance to the
pocket that is generally exposed to the solvent and therefore
highly hydrophilic.

The CoMSIA contour maps of the hydrogen-bond donor
and hydrogen-bond acceptor fields are shown in Fig. 9(b-c),
respectively. Cyan contour (contribution level of 80 %)
indicates regions where H-bond donor group increase activity,
purple contours (contribution level of 20 %) suggest regions
where H-bond donor decreases the activity.

The cyan contour in front of the nitrogen of urea suggests
that H-bond donor groups are favoured there. In this region
the NH group of the template molecule forms a hydrogen bond
with Glu 883 as hydrogen bond donor. The purple contours
surrounding the urea moiety indicates that this area is not
favoured to H-bond donor group.

Magenta contours (contribution level of 80 %) indicate
regions where H-bond acceptor group increases activity, red
contours (contribution level of 20 %) represent regions where
H-bond acceptor group decreases the activity. A large magenta
contour surrounded the oxygen of urea moiety indicates that
H-bond acceptor groups are favoured there. This region is
formed by residues Asp 1044 and Glu 915. Moreover, the red
contours close to the sulfone group indicates that this area is
favourable to a substituent of hydrogen-bond donor, this part
of the site is lined by residues Arg 1030, Asn 921 and Thr 924
as hydrogen acceptor. The contribution from the hydrophobic,
H-bond donor and H-bond acceptor fields for the HAD model
are, respectively: 0.416, 0.194 and 0.390 indicating that the

variations in the binding affinity are dominated by the hydro-
phobic interactions.

To verify if CoMFA and CoMSIA models developed are
able to predict the inhibitory activity of molecules structurally
different from the molecules of our data base, we used a mole-
cule taken from the literature, the Sunitinib known as Sutent37.
This molecule used in the treatment of gastrointestinal tumors
is different from the molecules of present study. The Sunitinib
is an inhibitor of tyrosine kinase, it inhibits eight receptor protein-
tyrosine kinase; the VEGFR1, VEGFR2, VEGFR3, PDGFRα,
PDGFRβ, cKit, Flt3, CSF1-R. The inhibitory activity of
Sunitinib for the VEGFR-2 is IC50 = 10 nM.

To integrate the Sunitinib in the model and to predict its
biological activity, the Sunitinib was first minimized and
aligned on the molecule 16 using the nitrogen and oxygen of
urea as points of overlapping. Then it was docked in the binding
site of KDR. After the complex obtained was minimized, the
latter showed that the Sunitinib interacts with the same residues
as molecule 16 namely Glu 883 and Asp1044. After extracting
the Sunitinib from the hydrophobic pocket, it was minimized
and its activity was predicted by each models. Prediction by
models CoMFA II and CoMSIA (HAD) are 7.96 and 8.04,
respectively. These values are very close to the experimental
activity which is 8.0. Both models are good predictive models
and could be used to guide the design of new active molecules.

Conclusion

In this study, we have derived 3D-QSAR models using
the CoMFA and CoMSIA methods in order to correlate the
inhibitory activity of 45 VEGFR-2 PTK inhibitors to their struc-
ture. The 45 best binding conformations of these inhibitors,
which belong to three different classes of molecules, were
determined using docking and alignment. Based on the
statistical analyses and the validation on the compounds of
the test set, each model shows a good predictive ability. The
results demonstrate that the hydrophobic field is the most
important parameter in the inhibitory mechanism. The two
models chosen according to the r2 predictive can help to better
understanding of inhibitory mechanism. They will also provide
a valuable tool for guiding to design new inhibitors with
observable structural diversity and enhanced activity.
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